-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathslides_lecture04_optional.tex
1478 lines (1162 loc) · 41.1 KB
/
slides_lecture04_optional.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
% Optional reading
%
\begin{frame}[plain,c]
\begin{center}
{\Huge \bf Optional reading for Lecture \thislecture}
\end{center}
\end{frame}
%
%
%
\begin{frame}{Electric dipole field}
\begin{columns}
\begin{column}{0.20\textwidth}
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/schematics/electric_field_pos_point_charge.png}\\
\end{center}
\end{column}
\begin{column}{0.80\textwidth}
As we know, the potential field $V(\vec{r})$ due to an
{\bf electric monopole} (i.e. a point charge q) has an $1/r$ dependence:
\begin{equation*}
V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}
\end{equation*}
Consequently, its electric field $\vec{E}(\vec{r})$ ($\vec{E} = -\vec{\nabla}V$)
has an $1/r^2$ dependence.
\end{column}
\end{columns}
\vspace{0.3cm}
\begin{columns}
\begin{column}{0.80\textwidth}
We will see that the potential field $V(\vec{r})$ due to an {\bf electric dipole} is
\begin{equation*}
{\bf V \approx \frac{1}{4\pi\epsilon_0} \frac{\vec{p} \hat{r}}{r^2} }
\end{equation*}
Therefore, it falls off as $1/r^2$, faster than the monopole potential.
Consequently, the dipole electric field $\vec{E}(\vec{r})$
has an $1/r^3$ dependence.
\end{column}
\begin{column}{0.20\textwidth}
\begin{center}
\includegraphics[width=0.90\textwidth]{./images/schematics/electric_dipole_field_lines_2.png}\\
\end{center}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Calculating the electric dipole field}
As we know, the potential field due to a single charge q is given by:
\begin{equation*}
V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}
\end{equation*}
\vspace{0.1cm}
\begin{columns}
\begin{column}{0.25\textwidth}
\begin{center}
\includegraphics[width=0.95\textwidth]{./images/schematics/electric_dipole_0.png}\\
\end{center}
\end{column}
\begin{column}{0.75\textwidth}
Now, I have 2 charges: a positive and a negative one. The superposition principle applies.
The potential at a distance r from the centre of the dipole is:
\begin{equation*}
V = \frac{1}{4\pi\epsilon_0} \Big( \frac{q}{r_{+}} - \frac{q}{r_{-}} \Big)
\end{equation*}
\end{column}
\end{columns}
\vspace{0.1cm}
I need to express $r_{+}$ and $r_{-}$ in terms of r.
From the law of cosines (generalisation of the Pythagorean theorem):
\begin{equation*}
r_{+}^{2} = r^{2} + (d/2)^{2} - r \cdot d \cdot cos\theta
= r^{2} \Big( 1 - \frac{d}{r} cos\theta + \frac{d^2}{4r^2} \Big) \xRightarrow{r>>d}
\end{equation*}
\begin{equation*}
r_{+}^{2} \approx r^{2} \Big( 1 - \frac{d}{r} cos\theta \Big)
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Calculating the electric dipole field}
For $r_{-}$, the expressions are similar but involves $cos(\pi - \theta) = -cos\theta$ and,
therefore, there is an extra minus sign.
\begin{equation*}
r_{-}^{2} \approx r^{2} \Big( 1 + \frac{d}{r} cos\theta \Big)
\end{equation*}
For convenience let me rename the small term involving d/r as $\epsilon$:
\begin{equation*}
\frac{d}{r} cos\theta = \epsilon
\end{equation*}
We have that
\begin{equation*}
r_{+}^{2} \approx r^{2} (1 - \epsilon) \Rightarrow
r_{+} \approx r (1 - \epsilon)^{1/2} \Rightarrow
\frac{1}{r_{+}} \approx \frac{1}{r} (1 - \epsilon)^{-1/2} \Rightarrow
\frac{1}{r_{+}} \approx \frac{1}{r} (1 + \frac{1}{2}\epsilon)
\end{equation*}
and, similarly
\begin{equation*}
\frac{1}{r_{-}} \approx \frac{1}{r} (1 - \frac{1}{2}\epsilon)
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Calculating the electric dipole field}
Therefore
\begin{equation*}
\frac{1}{r_{+}} - \frac{1}{r_{-}} \approx
\Big( \frac{1}{r} (1 + \frac{1}{2}\epsilon) \Big) -
\Big( \frac{1}{r} (1 - \frac{1}{2}\epsilon) \Big) =
\frac{1}{r} \epsilon \xRightarrow{\epsilon = \frac{d}{r} cos\theta}
\end{equation*}
\begin{equation*}
\frac{1}{r_{+}} - \frac{1}{r_{-}} \approx \frac{d}{r^2} cos\theta
\end{equation*}
The electric dipole potential is given by
\begin{equation*}
V = \frac{1}{4\pi\epsilon_0} \Big( \frac{q}{r_{+}} - \frac{q}{r_{-}} \Big) \Rightarrow
V \approx \frac{1}{4\pi\epsilon_0} \frac{q d cos\theta}{r^2} \Rightarrow
\end{equation*}
\begin{equation*}
V \approx \frac{1}{4\pi\epsilon_0} \frac{\vec{p} \cdot \hat{r}}{r^2}
\end{equation*}
So the potential of a dipole falls off as $1/r^2$ ($1/r$ for a monopole).\\
Consequently, the electric field of a dipole falls off as $1/r^3$.\\
\end{frame}
% ------------------------------------------------------------------------------
%
%
%
\begin{frame}{The {\em multipole} expansion}
\begin{columns}
\begin{column}{0.30\textwidth}
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/schematics/continuous_charge_distribution_1.png}\\
\end{center}
\end{column}
\begin{column}{0.70\textwidth}
For an {\bf arbitrary charge distribution} characterised by a density $\rho$
the potential can be expanded to:
\begin{equation*}
V(r) = \frac{1}{4\pi\epsilon_0} \sum_{n=0}^{\infty} \frac{1}{r^{n+1}}
\int_{vol} (r^{\prime})^{n} P_{n}(cos\theta^{\prime}) \rho(\vec{r^{\prime}}) d{\tau}^{\prime}
\end{equation*}
where $\theta^{\prime}$ is the angle between $\vec{r}$ and $\vec{r^{\prime}}$.
Notice that there is no r dependence in the integral.\\
\end{column}
\end{columns}
\vspace{0.3cm}
This is called the {\bf multipole expansion}.
\begin{itemize}
{\small
\item The first ($1/r$) term is the {\bf monopole} term
\item The second ($1/r^2$) term is the {\bf dipole} term
\item $1/r^3$ term: {\bf quadruple} term
\item $1/r^4$ term: {\bf octopole} term
\item ...
}
\end{itemize}
\end{frame}
% ------------------------------------------------------------------------------
%
% Worked example : The not-so-parallel plate capacitor
%
{
\problemslide
\begin{frame}{Worked example: The not-so-parallel plate capacitor}
\begin{blockexmplque}{Question}
In the figure below, you are given the not-so-parallel plate capacitor.
\begin{itemize}
\item
Neglecting edge effects, when a voltage difference $V_0$ is placed
across the two conductors, find the potetial everywhere between the plates.
\item
When the wedge is filled with a medium of dielectric constant $\epsilon$,
find the capacitance of the system in terms of the constants given.
\end{itemize}
\begin{center}
\includegraphics[width=0.60\textwidth]{./images/problems/lect4_not_so_parallel_plane_capacitor_1.png}\\
\end{center}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: The not-so-parallel plate capacitor}
Neglecting edge effects, the problem is a two-dimensional one.\\
\vspace{0.1cm}
Symmetry dictates that the electric field is parallel to the $xy$ plane
and it is {\em independent} of $z$.\\
\vspace{0.1cm}
A convenient coordinate system for our analysis is $O^\prime (x^\prime, y^\prime, z^\prime)$
which is shifted from $O (x, y, z)$ by a distance $\ell^\prime$ along the $x$ axis,
so imaginary extrapolations of the capacitor plates
intersect at $x^\prime=0$, as shown below.
\begin{center}
\includegraphics[width=0.80\textwidth]{./images/problems/lect4_not_so_parallel_plane_capacitor_2.png}\\
\end{center}
\end{frame}
%
%
%
\begin{frame}{Worked example: The not-so-parallel plate capacitor}
The quantities $\ell^\prime$, $\theta_0$, $\theta$ and $r$ introduced above (see schematic)
can be easily related to the given quantities $\ell$, $d$, $h$ and the coordinates $x,y$
of a point within the capacitor in the original coordinate system ($O$).
\begin{equation*}
tan\theta_0 = \frac{d+h}{\ell+\ell^\prime} = \frac{d}{\ell^\prime} \Rightarrow
\ell^\prime = \ell \frac{d}{h}
\end{equation*}
\begin{equation*}
tan\theta_0 = \frac{d}{\ell^\prime} = \frac{\cancel{d}}{\ell \frac{\cancel{d}}{h}} \Rightarrow
\theta_0 = arctan\Big(\frac{h}{\ell}\Big)
\end{equation*}
\begin{equation*}
tan\theta = \frac{y}{x+\ell^\prime} = \frac{y}{x+\ell \frac{d}{h}} \Rightarrow
\theta = arctan\Big(\frac{y}{x+\ell \frac{d}{h}}\Big)
\end{equation*}
\begin{equation*}
cos\theta = \frac{x+\ell^\prime}{r} = \frac{x+\ell \frac{d}{h}}{r} \xRightarrow{\; cos\theta \approx 1 \;}
r = x + \ell \frac{d}{h}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: The not-so-parallel plate capacitor}
The potetial between the plates can be found by solving Poisson's equation
\begin{equation*}
\vec{\nabla}^{2} V = \frac{\rho}{\epsilon_0} \xRightarrow{\rho=0}
\vec{\nabla}^{2} V = 0
\end{equation*}
In polar coordinates, this is written as
\begin{equation*}
\frac{1}{r^2} \frac{d^2V(\theta)}{d\theta} = 0 \Rightarrow
\frac{d^2V(\theta)}{d\theta} = 0
\end{equation*}
\vspace{0.2cm}
The equation has the following solution
\begin{equation*}
V(\theta) = A + B \theta
\end{equation*}
The costants $A, B$ can be derived from the boundary conditions
\begin{equation*}
V(\theta = 0) = 0 \Rightarrow A = 0
\end{equation*}
\begin{equation*}
V(\theta = \theta_0) = V_0 \xRightarrow{A = 0}
B \theta_0 = V_0 \Rightarrow B = \frac{V_0}{\theta_0}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: The not-so-parallel plate capacitor}
Therefore, the solution $V(\theta)$ is given by
\begin{equation*}
V(\theta) = \frac{V_0}{\theta_0} \theta
\end{equation*}
Using the expression for $\theta_0$ that was derived previously,
$V(\theta)$ can be written as
\begin{equation*}
V(\theta) = \frac{V_0}{arctan\Big(\frac{h}{\ell}\Big)} \theta
\end{equation*}
In terms of coordinates $x,y$ in the original coordinate system ($O$),
the potential can be expressed as
\begin{equation*}
V(x,y) = \frac{V_0}{arctan\Big(\frac{h}{\ell}\Big)}
\arctan\Big(\frac{y}{x+\ell \frac{d}{h}}\Big)
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: The not-so-parallel plate capacitor}
The capacitance of the system will be calculated from
\begin{equation*}
C = \frac{|Q|}{|V_0|}
\end{equation*}
where the unknown charge $Q$ can be estimated from
\begin{equation*}
Q = \oint \vec{D} \cdot d\vec{S}
\end{equation*}
The field $\vec{D}$ is related to electric field $\vec{E}$,
and therefore the potential V, as
\begin{equation*}
\vec{D} = \epsilon \vec{E} \xRightarrow{\vec{E} = -\vec{\nabla}V}
\vec{D} = -\epsilon \vec{\nabla}V
\end{equation*}
Therefore
\begin{equation*}
\vec{D} =
-\epsilon \frac{1}{r} \frac{\partial V}{\partial \theta} \hat{\theta}
\xRightarrow{\;V = \frac{V_0}{\theta_0} \theta \;}
\vec{D} = - \frac{1}{r} \frac{\epsilon V_0}{\theta_0} \hat{\theta}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: The not-so-parallel plate capacitor}
Using the above expression for $\vec{D}$, $Q$ is calculated as
\begin{equation*}
Q = \oint \vec{D} \cdot d\vec{S} = \oint D dS
\xRightarrow{\; dS = w dx, \; D = - \frac{1}{r} \frac{\epsilon V_0}{\theta_0} \;}
Q = -\frac{w \epsilon V_0}{\theta_0} \int_{0}^{\ell} \frac{1}{r} dx
\xRightarrow{\; r = x + \ell \frac{d}{h} \;}
\end{equation*}
\begin{equation*}
Q = -\frac{w \epsilon V_0}{\theta_0} \int_{0}^{\ell} \frac{1}{x + \ell \frac{d}{h}} dx =
-\frac{w \epsilon V_0}{\theta_0} ln(x + \ell \frac{d}{h}) \Big\rvert_{0}^{\ell} \Rightarrow
\end{equation*}
\begin{equation*}
Q = -\frac{w \epsilon V_0}{\theta_0} ln \frac{d + h}{d}
\xRightarrow{\theta_0 = arctan\Big(\frac{h}{\ell}\Big)}
Q = -\frac{w \epsilon V_0}{arctan\Big(\frac{h}{\ell}\Big)} ln \Big(\frac{d + h}{d}\Big)
\end{equation*}
Therefore
\begin{equation*}
C = \frac{|Q|}{|V_0|} =
\frac{w \epsilon}{arctan\Big(\frac{h}{\ell}\Big)} ln \Big(\frac{d + h}{d}\Big)
\end{equation*}
\end{frame}
} % Worked example
% ------------------------------------------------------------------------------
%
% Worked example : Pulling a dielectric out of a capacitor
%
{
\problemslide
\begin{frame}{Worked example: Pulling a dielectric out of a capacitor}
\begin{blockexmplque}{Question}
A cylindrical capacitor of length $L$ consists of an inner metallic wire
of radius $a$, and a thin outer metallic shell of radius $b$.
The space in between is filled with a dielectric with permittivity $\epsilon$.\\
As we have seen in the workshops, if edge effects are ignored,
the capacitance $C$ of the cylindrical
capacitor is given by
\begin{equation*}
C = \frac{2\pi \epsilon L}{ln(b/a)}.
\end{equation*}
\vspace{0.2cm}
Suppose that the dielectric is pulled partly out of the capacitor,
and that the capacitor is connected to a battery of electromotive force $V$.
\begin{enumerate}
\item
Find the force necessary to hold the dielectric in this position.
\item
In which direction must the force be applied?\\
\end{enumerate}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: Pulling a dielectric out of a capacitor}
\begin{center}
\includegraphics[width=0.67\textwidth]{./images/problems/lect4_pulling_dielectric_out_of_capacitor_1.png}\\
\end{center}
\end{frame}
%
%
%
\begin{frame}{Worked example: Pulling a dielectric out of a capacitor}
If the dielectric is pulled out of the cylindrical capacitor by a length $x$,
then length $L-x$ remains inside the capacitor.
The part of the capacitor with length $x$ that does not have a dielectric
has capacitance $C_1$ given by
\begin{equation*}
C_1 = \frac{2\pi \epsilon_0 x}{ln(b/a)}
\end{equation*}
whereas the part of the capacitor with length $L-x$ that does have a
dielectric has a capacitance $C_2$ given by
\begin{equation*}
C_2 = \frac{2\pi \epsilon (L-x)}{ln(b/a)}.
\end{equation*}
Those two capacitors have a common potential difference across the
inner and outer conductors (connected parallel) and, therefore, the
combined capacitance $C$ is
\begin{equation*}
C = C_1 + C2 =
\frac{2\pi \epsilon_0 x}{ln(b/a)} +
\frac{2\pi \epsilon (L-x)}{ln(b/a)} =
\frac{2\pi \epsilon}{ln(b/a)}
\Big(L + (\frac{\epsilon_0}{\epsilon}-1) x \Big)
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Pulling a dielectric out of a capacitor}
The work provided by the battery as it charges the capacitor
becomes energy stored in the capacitor and mechanical work of
the force $F$ that moves the dielectric with respect to the capacitor.
We can write
\begin{equation*}
dW_{battery} = dU_{capacitor} + dW_{mechanical} \Rightarrow
\end{equation*}
\begin{equation*}
V dQ = d\Big(\frac{1}{2}CV^2\Big) + F dx
\end{equation*}
Since $V$ is constant, the above can be written as
\begin{equation*}
V dQ = \frac{1}{2}V^2 dC + F dx
\end{equation*}
Using the definition of capacitance, $C = \frac{Q}{V}$, we can write
\begin{equation*}
dC = \frac{dQ}{V} \Rightarrow V^2 dC = V dQ
\end{equation*}
From all the above, we obtain
\begin{equation*}
V^2 dC = \frac{1}{2}V^2 dC + F dx \Rightarrow
\frac{1}{2}V^2 dC = F dx
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Pulling a dielectric out of a capacitor}
As the dielectric exits the capacitor, $x$ increases
and, therefore, $dx > 0$.
When $x$ increases we expect the capacitance $C$ to decrease.
Given that $\epsilon_0/\epsilon < 1$,
this can be easily deduced from the expression for $C$,
\begin{equation*}
C =
\frac{2\pi \epsilon}{ln(b/a)}
\Big(L + (\frac{\epsilon_0}{\epsilon}-1) x \Big).
\end{equation*}
Therefore, for $dx > 0$, $dC < 0$.
Considering this and observing the expression
\begin{equation*}
\frac{1}{2}V^2 dC = F dx,
\end{equation*}
we see that the term $F dx$ needs to be negative.
Therefore, for $dx > 0$ (direction of exiting the capacitor),
the direction of the force on the dielectric is opposite,
and the dielectric is pulled into the capacitor.
If we wanted to hold the dielectric in a fixed position, we would
need to apply an opposite force $\vec{F^\prime}(=-\vec{F})$,
pointing {\em away} from the capacitor.
\end{frame}
%
%
%
\begin{frame}{Worked example: Pulling a dielectric out of a capacitor}
The magnitude of my force $F^\prime=F$
\begin{equation*}
\frac{1}{2}V^2 dC = F dx \Rightarrow
F = \frac{1}{2}V^2 \frac{dC}{dx}
\end{equation*}
Differentiating the expression for $C$ we derived earlier, we find
\begin{equation*}
\frac{dC}{dx} = \frac{2\pi \epsilon}{ln(b/a)}
\Big(\frac{\epsilon_0}{\epsilon}-1\Big)
\end{equation*}
Thefore, the magnitude of the force is given by
\begin{equation*}
F = \frac{1}{2}V^2 \frac{2\pi \epsilon}{ln(b/a)}
\Big(\frac{\epsilon_0}{\epsilon}-1\Big) \Rightarrow
F = \frac{\pi \epsilon V^2}{ln(b/a)}
\Big(\frac{\epsilon_0}{\epsilon}-1\Big)
\end{equation*}
\end{frame}
} % Worked example
% ------------------------------------------------------------------------------
%
% Worked example : Spherical capacitor with inhomogeneous dielectric
%
{
\problemslide
\begin{frame}{Worked example: Cylindrical and spherical capacitors}
\begin{blockexmplque}{Question}
Calculate the capacitance of a cylindrical and a spherical capacitor.\\
\begin{columns}
\begin{column}{0.60\textwidth}
\begin{center}
\includegraphics[width=0.75\textwidth]{./images/schematics/capacitors_cylindrical_1.png}\\
\begin{equation*}
C = \frac{2 \pi \epsilon L}{ln(R_2/R_1)}
\end{equation*}
\end{center}
\end{column}
\begin{column}{0.40\textwidth}
\begin{center}
\includegraphics[width=0.75\textwidth]{./images/schematics/capacitors_spherical_1.png}\\
\begin{equation*}
C = \frac{4 \pi \epsilon}{\frac{1}{R_1}-\frac{1}{R_2}}
\end{equation*}
\end{center}
\end{column}
\end{columns}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: Cylindrical and spherical capacitors}
%-----------
% cylindrical
%-----------
As a Gaussian surface, for the calculation for a cylindrical capacitor,
we choose a cylinder of length $L$
and radius $\rho$ ($R_1$ $\le$ $\rho$ $\le$ $R_2$), closed by end caps.
It is coaxial with the cylinders of radii $R_1$ and $R_2$ and
encloses the central cylinder and
thus also the charge $Q$ on that cylinder.
Let's assume, without loss of generality, that the inner conductor is
positively charged and the outer conductor is negatively charged.
From Gauss' law:
\begin{equation*}
\Phi_E = Q/\epsilon_0 \Rightarrow
\oint_{S} \vec{E} \cdot d\vec{S} = Q/\epsilon_0
\end{equation*}
The electric field $\vec{E}$
is collinear with the normal to the Gaussian surface and, due to
cylindrical symmetry, it has the same magnitude everywhere on that
surface. There is no electric flux through the end caps.\\
The overall flux through the closed Gaussian surface is:
\begin{equation*}
\oint_{S} \vec{E} \cdot d\vec{S} =
\oint_{S} E \cdot dS =
E \oint_{S} dS =
E S = E (2\pi \rho L)
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Cylindrical and spherical capacitors}
Therefore:
\begin{equation*}
E (2\pi \rho L) = Q/\epsilon_0 \Rightarrow
E = \frac{Q}{2\pi \epsilon_0 L \rho}
\end{equation*}
In vector form the electric field is written as:
\begin{equation*}
\vec{E} = \frac{Q}{2\pi \epsilon_0 L \rho} \cdot \hat{\rho}
\end{equation*}
where $\hat{\rho}$ is the axial radial unit vector of the cylindrical
coordinate system used (it is perpendicular to the axis of the
two cylindrical conductors and it points outwards).\\
The potential difference $V$ between the positively and negatively
charged conductors is:
\begin{equation*}
V := V_{+} - V_{-} = - \int_{-}^{+} \vec{E} \cdot d\vec{\ell}
\end{equation*}
This integral is path-independent.
The integral is simplified if $\vec{E}$ and $d\vec{\ell}$ are colinear.
Since the electric field points along $\hat{\rho}$, we chose
$d\vec{\ell} = d\rho \cdot \hat{\rho}$.\\
\end{frame}
%
%
%
\begin{frame}{Worked example: Cylindrical and spherical capacitors}
Therefore:
\begin{equation*}
V = - \frac{Q}{2\pi \epsilon_0 L} \int_{R_2}^{R_1} \frac{d\rho}{\rho}
\end{equation*}
\begin{equation*}
= - \frac{Q}{2\pi \epsilon_0 L} ln(\rho) \rvert_{R_2}^{R_1} =
- \frac{Q}{2\pi \epsilon_0 L} (ln R_1 - ln R_2) =
\frac{Q}{2\pi \epsilon_0 L} (ln R_2 - ln R_1) \Rightarrow
\end{equation*}
\begin{equation*}
V = \frac{Q}{2\pi \epsilon_0 L} ln(R_2/R_1)
\end{equation*}
Therefore, the capacitance of a cylindrical capacitor is given by:
\begin{equation*}
C = \frac{Q}{V} = \frac{Q}{\frac{Q}{2\pi \epsilon_0 L} ln(R_2/R_1)} =
2\pi \epsilon_0 \frac{L}{ln(R_2/R_1)}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Cylindrical and spherical capacitors}
%-----------
% spherical
%-----------
As a Gaussian surface, for the calculation for a spherical capacitor,
we choose a sphere of radius $r$ ($R_1$ $\le$ $r$ $\le$ $R_2$)
which is concentric with the spherical shells of radii $R_1$ and $R_2$.
Let's assume, without loss of generality, that the inner conductor is
positively charged and the outer conductor is negatively charged.
From Gauss' law:
\begin{equation*}
\Phi_E = Q/\epsilon_0 \Rightarrow
\oint_{S} \vec{E} \cdot d\vec{S} = Q/\epsilon_0
\end{equation*}
The electric field $\vec{E}$
is collinear with the normal to the chosen Gaussian surface and, due to
spherical symmetry, it has the same magnitude everywhere on that
surface:
\begin{equation*}
\oint_{S} \vec{E} \cdot d\vec{S} =
\oint_{S} E \cdot dS =
E \oint_{S} dS =
E S =
E (4\pi r^2)
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Cylindrical and spherical capacitors}
Therefore:
\begin{equation*}
E (4\pi r^2) = Q/\epsilon_0 \Rightarrow
E = \frac{Q}{4\pi \epsilon_0 r^2}
\end{equation*}
In vector form the electric field is written as:
\begin{equation*}
E = \frac{Q}{4\pi \epsilon_0 r^2} \hat{r}
\end{equation*}
where $\hat{r}$ is the radial unit vector of the spherical coordinate
system used.
The potential difference $V$ between the positively and negatively
charged conductors is:
\begin{equation*}
V := V_{+} - V_{-} = - \int_{-}^{+} \vec{E} d\vec{\ell}
\end{equation*}
The above path-independent integral is
simplified if $\vec{E}$ and $d\vec{\ell}$ are collinear
($d\vec{\ell} = dr \cdot \hat{r}$).
\end{frame}
%
%
%
\begin{frame}{Worked example: Cylindrical and spherical capacitors}
Therefore:
\begin{equation*}
V = - \frac{Q}{4\pi} \int_{R_2}^{R_1} \frac{dr}{r^2}
\end{equation*}
\begin{equation*}
= - \frac{Q}{4\pi \epsilon_0} (-\frac{1}{r}) \rvert_{R_2}^{R_1} =
- \frac{Q}{4\pi \epsilon_0} (-\frac{1}{R_1} + \frac{1}{R_2}) =
\frac{Q}{4\pi \epsilon_0} (\frac{1}{R_1} - \frac{1}{R_2}) \Rightarrow
\frac{Q}{4\pi \epsilon_0} \frac{R_2-R_1}{R_1 R_2}
\end{equation*}
\begin{equation*}
V = \frac{Q}{4\pi \epsilon_0} \frac{R_2-R_1}{R_1 R_2}
\end{equation*}
Therefore, the capacitance of a spherical capacitor is given by:
\begin{equation*}
C = \frac{Q}{V} = \frac{Q}{\frac{Q}{4\pi \epsilon_0} \frac{R_2-R_1}{R_1 R_2}} =
4\pi \epsilon_0 \frac{R_1 R_2}{R_2-R_1}
\end{equation*}
\end{frame}
} % Worked example
% ------------------------------------------------------------------------------
%
% Worked example : Spherical capacitor with inhomogeneous dielectric
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: Capacitor with inhomogeneous dielectric}
\begin{blockexmplque}{Question}
The volume between two concentric conducting spherical surfaces of
radii $a$ and $b$ $(a < b)$, is filled with an inhomogeneous dielectric
with permittivity
\begin{equation*}
\epsilon = \frac{\epsilon_0}{1+Kr}
\end{equation*}
where $K$ is a constant and $r$ is the radial coordinate.
The displacement field $\vec{D}$ is related to the electric
field $\vec{E}$ by the usual formula $\vec{D} = \epsilon \vec{E}$.\\
A charge $Q$ is placed on the inner surface,
while the outer one is grounded.\\
Find:
\begin{itemize}
\item The magnitude and direction of the electric displacement
in the region $a < r < b$.
\item The capacitance of the device.
\item The volume polarization charge density in $a < r < b$.
\item The surface polarization charge density at $r = a$ and $r = b$.
\end{itemize}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: Capacitor with inhomogeneous dielectric}
The integral form of Gauss's law for the electric displacement field
$\vec{D}$ is
\begin{equation*}
\oint \vec{D} \cdot d\vec{S} = Q_{free}
\end{equation*}
Due to spherical symmetry of the problem, if we choose as integration
surface the surface of a sphere of radius r (a < r < b),
the vectors $\vec{D}$ and $d\vec{S}$ are both radial,
and $|\vec{D}|=D$ is constant over the integration surface.
Therefore:
\begin{equation*}
\oint D dS = Q_{free} \Rightarrow
D \oint dS = Q_{free} \Rightarrow
D 4 \pi r^2 = Q_{free} \Rightarrow
\end{equation*}
\begin{equation*}
D(r) = \frac{Q_{free}}{4\pi r^2}
\end{equation*}
The radial vector $\vec{D}$ can be written in vector form as:
\begin{equation*}
\vec{D}(\vec{r}) = \frac{Q_{free}}{4\pi r^2} \hat{r}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Capacitor with inhomogeneous dielectric}
The displacement and electric field vectors are related by:
\begin{equation*}
\vec{D}(\vec{r}) = \epsilon \vec{E}(\vec{r})
\end{equation*}
Therefore:
\begin{equation*}
\vec{E}(\vec{r}) = \frac{Q_{free}}{4\pi \epsilon r^2} \hat{r}
% \label{eq:p2b_Evec1}
\end{equation*}
The expression given for the permittivity of the inhomogeneous
dielectric is
\begin{equation*}
\epsilon = \frac{\epsilon_0}{1+Kr}
% \label{eq:p2_epsilon}
\end{equation*}
Substituting the above expression for $\epsilon$
into the earlier expression for $\vec{E}$, we have:
\begin{equation*}
\vec{E}(\vec{r}) = \frac{Q_{free}}{4\pi \epsilon_0} \frac{1+Kr}{r^2} \hat{r}
% \label{eq:p2b_Evec2}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Capacitor with inhomogeneous dielectric}
The potential difference $V$ between the two concentric spherical
surfaces of radii a and b is given by:
\begin{equation*}
V = \int_{a}^{b} \vec{E}(\vec{r}) \cdot d\vec{\ell}
% \label{eq:p2b_V1}
\end{equation*}
Choosing a radial integration path:
\begin{equation*}
d\vec{\ell}=d\vec{r}
\end{equation*}
and carrying out the integration from a to b, we find:
\begin{equation*}
V =
\frac{Q_{free}}{4\pi \epsilon_0} \int_{a}^{b} \frac{1+Kr}{r^2} \hat{r} \cdot d\vec{r} =
\frac{Q_{free}}{4\pi \epsilon_0} \int_{a}^{b} \frac{1+Kr}{r^2} dr =
\frac{Q_{free}}{4\pi \epsilon_0}
\Big( \int_{a}^{b} \frac{dr}{r^2} + K \int_{a}^{b} \frac{dr}{r} \Big)
\end{equation*}
\begin{equation*}
= \frac{Q_{free}}{4\pi \epsilon_0}
\Big( -\frac{1}{r} + K ln(r) \Big) \Bigg\rvert_{a}^{b} =
\frac{Q_{free}}{4\pi \epsilon_0}
\Big( -\frac{1}{b} + K ln(b) + \frac{1}{a} - K ln(a) \Big) \Rightarrow
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Capacitor with inhomogeneous dielectric}
\begin{equation*}
V = \frac{Q_{free}}{4\pi \epsilon_0}
\Big( \frac{1}{a} - \frac{1}{b} + K ln(\frac{b}{a}) \Big)
% \label{eq:p2b_V2}
\end{equation*}
The capacitance of the device is given by:
\begin{equation*}
C = \frac{Q_{free}}{V}
\end{equation*}
Substituting V, we find:
\begin{equation*}
\displaystyle