-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathslides_lecture05_main.tex
1774 lines (1425 loc) · 48.7 KB
/
slides_lecture05_main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\renewcommand{\prevlecture}{4 }
\renewcommand{\thislecture}{5 }
\renewcommand{\nextlecture}{6 }
%
% Cover page
%
\title[PHYS 201 / Lecture \thislecture]
{
PHYS 201 / Lecture \thislecture\\
{\it Electric current / link with magnetic phenomena;\\
Magnetic field, Lorentz force; Cyclotron motion;\\
Biot-Savart law and applications}\\
}
\input{slides_author.tex}
\begin{frame}[plain]
\titlepage
\end{frame}
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
% Revision of previous lecture
%
\renewcommand{\lecturesummarytitle}{Revision }
\input{slides_lecture04_summary.tex}
%
% Plan for this lecture
%
\begin{frame}{Plan for Lecture \thislecture}
\begin{itemize}
\item Electric current
\begin{itemize}
\item The {\em microscopic} view
\end{itemize}
\item Magnetic phenomena
\begin{itemize}
\item Connection with the electric current
\end{itemize}
\item The magnetic field
\item Magnetic force on a charge
\begin{itemize}
\item Cyclotron motion and cyclotrons
\end{itemize}
\item Magnetic force on a current
\item Magnetic forces do no work
\item Calculating magnetic fields: The Biot-Savart law
\begin{itemize}
\item Magnetic field around a straight wire
\end{itemize}
\end{itemize}
\end{frame}
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
%
%
\begin{frame}{Electric current}
An {\bf electric current is a flow of electric charge.}\\
\vspace{0.2cm}
It is represented by the amount of charge passing through per unit time.
\begin{equation*}
I = \frac{dQ}{dt}
\end{equation*}
In SI, the unit of the electric current is the {\bf Ampere (A)}.
One Ampere is a charge change of 1 C over a period of 1 s.
\begin{itemize}
{\scriptsize
\item Actually, this is how we define the Coulomb!
We will see the actual definition of the Ampere once we have studied the magnetic force
between two parallel conductors.\\
}
\end{itemize}
\vspace{0.1cm}
\begin{columns}
\begin{column}{0.45\textwidth}
\begin{center}
\includegraphics[width=0.78\textwidth]{./images/schematics/current_direction_convention.png}
\end{center}
\end{column}
\begin{column}{0.55\textwidth}
Note that, {\em by convention}, the current direction is {\bf the direction of flow of positive charges}.
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Electric current: The {\em microscopic} view }
Consider a ``tube'' within a conducting material:\\
\vspace{0.2cm}
\begin{columns}
\begin{column}{0.67\textwidth}
\includegraphics[width=0.98\textwidth]{./images/schematics/current_microscopic_view.png}
\end{column}
\begin{column}{0.33\textwidth}
Let
\begin{itemize}
\item n be the carrier density,
\item q be the charge of each carrier, and
\item $\vec{u}_{d}$ be the average carrier velocity
\end{itemize}
\end{column}
\end{columns}
\vspace{0.4cm}
The amount of charge passing through a cross-section of area dS is:
\begin{equation*}
dQ = n q d\vec{x} \cdot d\vec{S}
= n q \Big( \vec{u}_{d} dt \Big) \cdot d\vec{S}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Electric current: The {\em microscopic} view }
Therefore, the current I through the area dS is given by:
\begin{equation*}
I = \frac{dQ}{dt} = \frac{n q \Big( \vec{u}_{d} dt \Big)
d\vec{S}}{dt} = n q \vec{u}_{d} \cdot d\vec{S}
\end{equation*}
The total amount of current flowing through the entire surface S
is given by integrating the above result over S:
\begin{equation*}
I = \int_{S} n q \vec{u}_{d} \cdot d\vec{S}
\end{equation*}
We can define a {\bf current density} $\vec{j}$ as follows:
\begin{equation*}
I = \int_{S} \vec{j} \cdot d\vec{S}
\end{equation*}
The current density is the {\bf current per unit area of cross-section}.\\
You can easily see from the above that:
\begin{equation*}
\vec{j} = n q \vec{u}_{d}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Electric current: The {\em microscopic} view }
In general
\begin{equation*}
\vec{j} = \sigma \vec{E}
\end{equation*}
where $\sigma$ is the {\bf conductivity} of the material.
It is an intrinsic property of a material and
a {\bf measure of its ability to conduct an electric current.}
\begin{itemize}
\item for a perfect insulator: $\sigma$=0, whereas
for a perfect conductor: $\sigma$=$\infty$
\end{itemize}
In SI, the unit of conductivity is $1/(\Omega \cdot m)$ (= $S/m$).\\
\vspace{0.2cm}
The inverse of conductivity is called, {\bf resistivity} ($\rho$):
\begin{equation*}
\rho = \frac{1}{\sigma}
\end{equation*}
Typical values:\\
\begin{center}
{\scriptsize
\begin{table}
\begin{tabular}{|c|c|c|}
\hline
Material &
$\rho$ $(\Omega \cdot m)$ at $20^{o}$C &
$\sigma$ $({\Omega}^{-1} \cdot m^{-1})$ at $20^{o}$C \\
\hline
Graphene & 1.00$\times$10$^{-8}$ & 1.00$\times$10$^{8}$ \\
Copper & 1.68$\times$10$^{-8}$ & 5.96$\times$10$^{7}$ \\
Glass & 10$^{11}$-10$^{15}$ & 10$^{-15}$-10$^{-11}$ \\
\hline
\end{tabular}
\end{table}
}
\end{center}
\end{frame}
%
%
%
\begin{frame}{Electric current: The {\em microscopic} view }
Assume that a current I is {\bf flowing out of a volume $\tau$}
through its surrounding closed surface S.
The current flowing through the surface S is given by the negative (*)
rate of change of the charge contained in the volume $\tau$:
\begin{equation*}
I = - \frac{dQ}{dt}
\end{equation*}
where Q is the volume integral of the charge density $\rho$:
\begin{equation*}
Q = \int_{\tau} \rho d\tau
\end{equation*}
Therefore
\begin{equation*}
I = - \frac{d}{dt} \int_{\tau} \rho d\tau = - \int_{\tau} \frac{d\rho}{dt} d\tau
\end{equation*}
\begin{equation*}
I = \oint_{S} \vec{j} \cdot d\vec{S}
\xRightarrow{\oint_{S} \vec{F} \cdot d\vec{S} = \int_{\tau} \vec{\nabla} \cdot \vec{F} d\tau}
I = \int_{\tau} \vec{\nabla} \cdot \vec{j} d\tau
\end{equation*}
\noindent\rule{2cm}{0.4pt}\\
{\scriptsize
(*) Current flows out, so the amount of charge in {\bf decreases}.\\
}
\end{frame}
%
%
%
\begin{frame}{Electric current: The {\em microscopic} view }
Equating the right-hand sides of the previous two equations, we have:
\begin{equation*}
\int_{\tau} \vec{\nabla} \cdot \vec{j} d\tau = - \int_{\tau} \frac{d\rho}{dt} d\tau \Rightarrow
\int_{\tau} \Big( \vec{\nabla} \cdot \vec{j} +\frac{d\rho}{dt} \Big) d\tau = 0
\end{equation*}
\begin{equation*}
\vec{\nabla} \cdot \vec{j} +\frac{d\rho}{dt} = 0
\end{equation*}
\vspace{0.2cm}
The divergence of the current density is zero except for points where the
net charge is introduced to or removed from the system.\\
\vspace{0.2cm}
This result is known as the {\bf continuity equation}.\\
\vspace{0.2cm}
{\bf Charge conservation leads to current conservation.}\\
\end{frame}
%
% Worked example
%
{
\setbeamercolor {frametitle} {bg=eBG1}
\setbeamercolor {author in head/foot} {bg=eBG1}
\setbeamercolor {title in head/foot} {bg=eBG2}
\setbeamercolor {date in head/foot} {bg=eBG3}
\setbeamercolor {date in head/foot} {fg=eFG3}
%
%
%
\begin{frame}{Worked example}
\begin{blockexmplque}{Question}
Near Earth, the density of protons in the solar wind (a stream of particles from the Sun)
is 8.70 $cm^{-3}$, and their speed is 470 km/s.
\begin{itemize}
\item Find the current density of these protons.
\item If the Earth magnetic field did not deflect the protons, what total current would Earth
receive?
\end{itemize}
The radius of the Earth is 6.37 $\times$ 10$^6$ m.
\end{blockexmplque}
\vspace{0.4cm}
The magnitude of the current density vector $\vec{j}$ is:
\begin{equation*}
|\vec{j}| = n q |\vec{u}| \Rightarrow
\end{equation*}
\begin{equation*}
|\vec{j}| =
\Big( \frac{8.70}{10^{-6} \; m^3} \Big)
\Big( 1.60 \times 10^{-19}\; C \Big)
\Big( 470 \times 10^{3} \; m/s \Big) = 6.54 \times 10^{-7} A/m^2
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example}
Although the total surface area of Earth is $4\pi R_{Earth}^2$ (that of a sphere), the area to be used
in a computation of how many protons in an approximately unidirectional beam (the solar wind)
will be captured by Earth is its projected area. In other words, for the beam, the encounter is with
a ``target'' of circular area $\pi R_{Earth}^2$ . \\
\vspace{0.3cm}
The rate of charge transport implied by the influx of protons is:
\begin{equation*}
I = \Big( \pi R_{Earth}^2 \Big) |\vec{j}| \Rightarrow
\end{equation*}
\begin{equation*}
I = \pi \Big( 6.37 \times 10^{6}\; m \Big)^2
\Big( 6.54 \times 10^{-7}\; A/m^2 \Big) = 8.34 \times 10^{7} A
\end{equation*}
\end{frame}
} % Worked example
%
%
%
\begin{frame}{Magnetic phenomena}
As we have seen,
magnetic phenomena (as well as electric ones), were known from the antiquity. \\
\vspace{0.3cm}
\begin{columns}
\begin{column}{0.50\textwidth}
\includegraphics[width=0.99\textwidth]{./images/photos/lodestone_1.jpg}
\end{column}
\begin{column}{0.50\textwidth}
{\bf Lodestones} (naturally magnetised pieces of the mineral {\em magnetite}, first found in Magnesia, Asia Minor)
were known to be {\bf attracted to iron and other lodestones}.\\
\vspace{0.3cm}
Early application: The {\bf magnetic compass} (12th century AD).\\
\end{column}
\end{columns}
\vspace{0.3cm}
{\bf Magnetic phenomena, were seemingly unrelated to electric ones}.\\
\end{frame}
%
%
%
\begin{frame}{Magnetic phenomena and electric current}
A {\bf compass is deflected in the presence of a current}
(but not in presence of stationary charges):
{\bf A current generates a magnetic field!}\\
\begin{columns}
\begin{column}{0.40\textwidth}
\begin{center}
{\small
First observed by Oersted\\ in the early 1800's.\\
\includegraphics[width=0.60\textwidth]{./images/people/orsted.jpg}\\
Hans Christian Oersted\\ (1777-1851)\\Danish physicist\\
}
\end{center}
\end{column}
\begin{column}{0.60\textwidth}
\begin{center}
\includegraphics[width=0.85\textwidth]{./images/photos/compass_deflection_wire_current_up.jpg}\\
\end{center}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Magnetic phenomena and electric current}
{\bf A current generates a magnetic field!}\\
\begin{columns}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.90\textwidth]{./images/photos/compass_deflection_wire_current_up.jpg}\\
\end{center}
\end{column}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.90\textwidth]{./images/schematics/magnetic_field_around_wire_01.png}\\
\end{center}
\end{column}
\end{columns}
\vspace{0.1cm}
Interestingly, the field doesn't point towards to (or away from) the wire:\\
{\bf It circles around it}. {\it (We will calculate this field later in this lecture.)}\\
\end{frame}
%
%
%
\begin{frame}{Magnetic phenomena and electric current}
Not only a compass would be deflected in the presence of a current,
but the opposite seems to be happening as well:\\
\vspace{0.3cm}
{\bf The motion of a magnet near a conducting loop induces a current in the loop}
(but there is no current if the magnet is stationary)!
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/schematics/magnetic_field_induces_current_in_conducting_loop.png}
\end{center}
\end{frame}
%
%
%
\begin{frame}{Magnetic phenomena and electric current}
As result of the fact that a current generates a magnetic field,
{\bf a magnetic force is exerted between two wires!}\\
\begin{columns}
\begin{column}{0.60\textwidth}
\begin{center}
\includegraphics[width=0.90\textwidth]{./images/schematics/magnetic_force_between_wires_01.png}\\
\end{center}
\end{column}
\begin{column}{0.30\textwidth}
\begin{center}
\includegraphics[width=0.90\textwidth]{./images/schematics/magnetic_force_between_wires.png}\\
\vspace{0.2cm}
{\small \it (We will calculate this force later in this lecture series.)}\\
\end{center}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Magnetic phenomena and electric current}
Let's reflect on the astonishing early observations:
\begin{itemize}
\item
{\bf Moving charges (electric currents) generate magnetic fields!}
\vspace{0.2cm}
\item
{\bf Moving magnetic fields generate electric currents!}
\vspace{0.2cm}
\item
{\bf There are magnetic forces between electric currents!}
\vspace{0.2cm}
\end{itemize}
\vspace{0.4cm}
Contrary to earlier beliefs, {\bf magnetic and electric phenomena
have a common origin: the electric charge!}\\
\vspace{0.2cm}
They are not different phenomena, but {\bf different manifestations of a
single interaction!}\\
\end{frame}
%
%
%
\begin{frame}{The magnetic field}
The {\bf magnetic field is the magnetic effect of electric currents and magnetic materials}.
\begin{itemize}
\item It is a {\bf vector field}: It permeates all space and associates a vector with each point.
\end{itemize}
\vspace{0.2cm}
In SI, the unit of the magnetic field is the {\bf Tesla (T)}.
\begin{itemize}
\item Named in honour of Nikola Tesla (1856-1943), a
Serbian-American physicist, engineer and inventor.
\item The Tesla is a derived unit
\begin{itemize}
\item A charge of 1 C with a velocity of 1 m/s perpendicular to a
magnetic field of 1 T, experiences a magnetic force of 1 N ($T = N \cdot s \cdot C^{-1} \cdot m^{-1}$)\\
\item Other common (equivalent) definitions:
$T = V \cdot s \cdot m^{-2} = N \cdot A \cdot m^{-1} = J \cdot A \cdot m^{-2} = Wb \cdot m^{-2}$
\end{itemize}
\item Another commonly used unit is the CGS one: the {\bf Gauss (G)}
\begin{itemize}
\item 1 G = $10^{-4}$ T
\item Earth's magnetic field is around 1 G.
\end{itemize}
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Typical magnetic fields}
\begin{columns}
\begin{column}{0.40\textwidth}
{
\begin{center}
\includegraphics[width=0.88\textwidth]{./images/photos/levitating_frog_01.jpg}\\
\vspace{0.1cm}
\includegraphics[width=0.88\textwidth]{./images/misc/neutron_star.png}\\
\end{center}
}
\end{column}
\begin{column}{0.60\textwidth}
\begin{itemize}
\item {\bf Human brain}:\\
{\color{blue}1 pT ($10^{-12}$ T)} / {\color{magenta}10 nG = ($10^{-8}$ G)}
\item {\bf Earth's} magnetic field:\\
Somewhat less than {\color{blue} $10^{-4}$ T} / {\color{magenta} 1 G }
\item {\bf Refrigerator} magnet:\\
{\color{blue} 5 mT (5 $10^{-3}$ T)} / {\color{magenta} 50 G}
\item {\bf LHC} dipole magnet:\\
{\color{blue} 10 T} / {\color{magenta} $10^{5}$ G}
\item Field that you need to {\bf levitate a frog}:
{\color{blue} 16 T} / {\color{magenta} 1.6 $\times$ $10^{5}$ G}
\item {\bf Neutron stars} (magnetar):\\
{\color{blue} 1 MT ($10^{6}$ T) - 100 GT ($10^{11}$ T)} / \\
{\color{magenta} 10 GG ($10^{10}$ G) - 1 PG ($10^{15}$ G)}
\end{itemize}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{``Magnetic charges''}
There are several similarities between electrostatics and magnetostatics:\\
\begin{columns}
\begin{column}{0.40\textwidth}
\begin{center}
\includegraphics[width=0.90\textwidth]{./images/schematics/magnetic_field_lines_01.png}\\
\end{center}
\end{column}
\begin{column}{0.60\textwidth}
\begin{itemize}
\item We have two ``types of magnetic charges''
(we call them {\bf North} and {\bf South} {\em poles})
\item Same poles repel each other, while opposite poles attract each other.
\item Magnetic field lines always start from a North pole and end in a South pole.
\end{itemize}
\end{column}
\end{columns}
\vspace{0.3cm}
However, {\bf there is one striking difference}:
\vspace{0.1cm}
Whereas single positive or a single negative charges (electric monopoles) exist in isolation,
{\bf magnetic monopoles do not exist} (or they have not been found yet (*)).\\
\noindent\rule{2cm}{0.4pt}\\
{\scriptsize
(*) Or, maybe we have: Google ``Blas Cabrera, Valentine's day magnetic monopole''\\
}
\end{frame}
%
%
%
\begin{frame}{Magnetic force on an electric charge}
{\bf What is the force that a magnetic field exerts on a moving charge?}\\
\vspace{0.2cm}
It was observed experimentally that the force $\vec{F}$ exerted by a magnetic field $\vec{B}$,
on a charge q moving with velocity $\vec{u}$ has a magnitude $|\vec{F}|$ that is proportional to all q,
$|\vec{u}|$ and $|\vec{B}|$:
\begin{equation*}
|\vec{F}| \propto q |\vec{u}| |\vec{B}|
\end{equation*}
It was observed that:
\begin{itemize}
{\small
\item magnetic force vanishes if $\vec{u}$ and $\vec{B}$ are parallel
\item force is increasing as the angle between $\vec{u}$ and $\vec{B}$ increases
\item the maximum force is exerted when $\vec{u}$ and $\vec{B}$ are perpendicular to each other
\item F is not on the same plane as $\vec{u}$ and $\vec{B}$,
but perpendicular to the plane defined by $\vec{u}$ and $\vec{B}$
}
\end{itemize}
All the above can be summarised as:
\begin{equation*}
\vec{F} = q \vec{u} \times \vec{B}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Magnetic force on an electric charge}
\begin{columns}
\begin{column}{0.27\textwidth}
\begin{center}
\includegraphics[width=0.90\textwidth]{./images/schematics/right_hand_rule_fbi.png}\\
\end{center}
\end{column}
\begin{column}{0.73\textwidth}
The magnetic force is given by:
\begin{equation*}
\vec{F} = q \vec{u} \times \vec{B}
\end{equation*}
Use the {\bf right-hand rule} to find the direction of $\vec{F}$.
\end{column}
\end{columns}
\begin{columns}
\begin{column}{0.30\textwidth}
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/misc/atlas_event.jpg}\\
\end{center}
\end{column}
\begin{column}{0.30\textwidth}
\begin{center}
\includegraphics[width=0.70\textwidth]{./images/misc/em_particle_shower.jpg}\\
\end{center}
\end{column}
\begin{column}{0.40\textwidth}
The {\bf magnetic force} exerted on a moving charge is
{\bf always perpendicular to its velocity} and acts as a {\bf centripetal force}.\\
\vspace{0.1cm}
Charges within magnetic fields tend to {\bf follow curved trajectories}.
\end{column}
\end{columns}
\end{frame}
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
% Worked example
%
{
\problemslide
%
%
%
\begin{frame}{Worked example}
\begin{blockexmplque}{Question}
A particle with charge q = -1.24 $\times 10^{-8}$ C is moving
in a magnetic field $\vec{B} = (1.4 \; T) \hat{x}$
with velocity $\vec{u} =$ $(4.19 \times 10^{4} \; m/s) \hat{x} + (-3.85 \times 10^{4} \; m/s) \hat{y}$.
Calculate in vector form the force exerted on the particle by the field.
\end{blockexmplque}
\vspace{0.4cm}
The magnetic force $\vec{F}$ exerted on the charged particle is:
\begin{equation*}
\vec{F} = q \vec{u} \times \vec{B} \Rightarrow
\end{equation*}
\begin{equation*}
\vec{F} = (-1.24 \times 10^{-8} C )
\Big\{ (4.19 \times 10^{4} \; m/s) \hat{x} + (-3.85 \times 10^{4} \; m/s) \hat{y} \Big\}
\times \Big\{(1.4 \; T) \hat{x} \Big\}
\end{equation*}
Notice that
$\hat{x} \times \hat{x} = 0$ and $\hat{y} \times \hat{x} = -\hat{z}$, and therefore:
\begin{equation*}
\vec{F} = \Big(-1.24 \times 10^{-8} C \Big)
\Big(-3.85 \times 10^{4} \; m/s \Big)
\Big(1.4 \; T \Big) \Big(-\hat{z}\Big) \Rightarrow
\end{equation*}
\begin{equation*}
\vec{F} = \Big( (-1.24) (-3.85) 1.4 \times 10^{-4} N \Big) \Big(- \hat{z}\Big) \Rightarrow
\vec{F} = - \Big( 6.6836 \times 10^{-4} N \Big) \hat{z}
\end{equation*}
\end{frame}
} % Worked example
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
% Worked example
%
{
\problemslide
%
%
%
\begin{frame}{Worked example}
\begin{blockexmplque}{Question}
In a 1.25T magnetic field directed vertically upward,
a particle with a charge of magnitude 8.5 ${\mu}C$ which moves initially
northward at 4.75 km/s is deflected towards the east.
\begin{enumerate}
\item What is the sign of the charge of the particle?
\item Find the magnetic force on the particle.
\end{enumerate}
\end{blockexmplque}
\begin{columns}[T]
\begin{column}{0.25\textwidth}
\begin{center}
\begin{figure}[ht]
\includegraphics[width=0.90\textwidth]{./images/problems/lect05_FuB_directions}\\
\end{figure}
\end{center}
\end{column}
\begin{column}{0.75\textwidth}
\begin{enumerate}
\item
Curl your right-hand fingers from $\vec{u}$ to $\vec{B}$ through the
smallest angle. This is the direction of $\vec{u} \times \vec{B}$,
and it points east. $\vec{F}$ ( = $q$ $\vec{u} \times \vec{B}$)
is in this direction too, so the charge is positive.
\item
Let $\phi$ be the angle between $\vec{u}$ and $\vec{B}$.
The force exerted on the particle is:
% \begin{equation*}
% |\vec{F}|= |q| \cdot |\vec{u}| \cdot |\vec{B}| \cdot sin\phi \Rightarrow
% \end{equation*}
\end{enumerate}
\end{column}
\end{columns}
\begin{equation*}
F
= q \cdot u \cdot B \cdot sin\phi
= \Big( 8.50 \times 10^{-6} \; C\Big)
\Big( 4.75 \times 10^{3} \; \frac{m}{s}\Big)
\Big( 1.25\; T \Big) sin\frac{\pi}{2}
= 0.0505 \; N
\end{equation*}
\end{frame}
} % Worked example
%
%
%
\begin{frame}{Lorentz force}
The total force felt by a charged body in the presence of
both electric and magnetic fields is called the {\bf Lorentz force}.
\begin{equation*}
\vec{F} = q \Big( \vec{E} + \vec{u} \times \vec{B} \Big)
\end{equation*}
\vspace{0.3cm}
It was first derived by Oliver Heaviside or James Maxwell.
Hendrik Lorentz derived it a few years later.\\
\vspace{0.3cm}
The {\bf magnetic force is much smaller than the electric force}
unless the particle is moving at a velocity that is a significant fraction of the speed of light.
\end{frame}
%
%
%
\begin{frame}{Cyclotron motion}
Let's study the {\bf simple trajectory} of a particle moving with a
{\bf constant velocity} u in a {\bf constant magnetic field} B.\\
\vspace{0.2cm}
\begin{columns}
\begin{column}{0.40\textwidth}
\begin{center}
\includegraphics[width=0.90\textwidth]{./images/schematics/cyclotron_motion_01.png}\\
\end{center}
\end{column}
\begin{column}{0.60\textwidth}
Assume that a positive charge enters the magnetic field B with a velocity u
that is perpendicular to the magnetic field which points inwards (see on the left).\\
\vspace{0.1cm}
The direction of the magnetic force, found using the right-hand rule,
is also shown.
\end{column}
\end{columns}
\vspace{0.2cm}
The magnetic force provides {\bf centripetal acceleration} and the charge will start moving
counter-clockwise, along a circle (of radius r), with a velocity that is constant in magnitude.\\
\end{frame}
%
%
%
\begin{frame}{Cyclotron motion}
The magnetic force for a charge q with velocity u perpendicular to B is:
\begin{equation*}
F = q u B
\end{equation*}
The centripetal force (mass times centripetal acceleration) is:
\begin{equation*}
F = m \frac{u^2}{r}
\end{equation*}
Therefore:
\begin{equation*}
m \frac{u^2}{r} = q u B \Rightarrow
m \frac{u}{r} = q B \Rightarrow
m u = q B r \Rightarrow
{\bf p = qBr}
\end{equation*}
where p is the particle momentum.
This is known as the {\bf cyclotron formula} and describes the motion of a charged particle in a cyclotron.\\
\vspace{0.2cm}
The period T (time for one revolution)
is independent of the particle velocity and it depends only on the
particle type and the magnetic field:
\begin{equation*}
T = \frac{2\pi r}{u} \xRightarrow{m u = q B r}
T = \frac{2\pi m}{q B}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Cyclotron}
\begin{columns}
\begin{column}{0.20\textwidth}
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/photos/cyclotron.jpg}\\
\end{center}
\end{column}
\begin{column}{0.70\textwidth}
{\bf A cyclotron is a type of particle accelerator}.\\
It was invented by Ernest Lawrence in 1932 and it was the most powerful
type of accelerator till it was superseded by the synchrotron in the 1950's.
\end{column}
\end{columns}
\begin{center}
\includegraphics[width=0.85\textwidth]{./images/schematics/cyclotron_diagram.png}\\
\end{center}
\end{frame}
%
%
%
\begin{frame}{The Liverpool Cyclotron}
\begin{columns}
\begin{column}{0.25\textwidth}
\begin{center}
\includegraphics[width=0.80\textwidth]{./images/people/chadwick.jpg}\\
{\scriptsize James Chadwick\\ (1891-1974)}\\
\vspace{0.2cm}
\includegraphics[width=0.80\textwidth]{./images/photos/met_cathedral.jpg}\\
{\scriptsize Liverpool Metropolitan Cathedral}\\
\end{center}
\end{column}
\begin{column}{0.75\textwidth}
\begin{itemize}
\item When {\bf Chadwick} (who discovered the neutron, Nobel Prize in Physics 1935)
was the Head of the Physics Department at the University of Liverpool,
(some time before the WW2) this was the home of a very large cyclotron.
\vspace{0.1cm}
\begin{itemize}
\item You can see pieces of the D's in the VGM.
\end{itemize}
\vspace{0.3cm}
\item And, in the 50's the University of Liverpool had a new synchrocyclotron, somewhere in the grounds of the
Metropolitan Cathedral, that was the most powerful accelerator in Europe at the time.\\
\end{itemize}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Cyclotron motion}
If the charged particle was entering the magnetic field at an angle with the field lines then it would do {\bf two motions}:\\
\vspace{0.2cm}
\begin{columns}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/schematics/cyclotron_motion_02.png}\\
\end{center}
\end{column}
\begin{column}{0.50\textwidth}
\begin{itemize}
{\small
\item On the plane perpendicular to the field, it would move in a {\bf circular trajectory}
with constant velocity $u_{\perp}$ (velocity component perpendicular to the field).\\
Note: $F_{\perp} = q \vec{u}_{\perp} \times \vec{B} = q {u}_{\perp} B$
\item It would also move along a {\bf straight line} in the direction of the field with constant
velocity $u_{\parallel}$ (component parallel to the field).\\
Note: $F_{\parallel} = q \vec{u}_{\parallel} \times \vec{B} = 0$
}
\end{itemize}
\end{column}
\end{columns}
\vspace{0.2cm}
The combination of the two motions causes a {\bf helical trajectory}.\\
\end{frame}
%
% Worked example