-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathslides_lecture06_optional.tex
911 lines (727 loc) · 25.7 KB
/
slides_lecture06_optional.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
\begin{frame}[plain,c]
\begin{center}
{\Huge \bf Optional reading for Lecture \thislecture}
\end{center}
\end{frame}
% ------------------------------------------------------------------------------
%
% Worked example :
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: Current loop on incline}
\begin{blockexmplque}{Question}
\begin{minipage}[l]{0.37\textwidth}
\begin{center}
\includegraphics[width=0.80\textwidth]{./images/problems/lect06_cylinder_on_incline}
\end{center}
\end{minipage}
\begin{minipage}[r]{0.60\textwidth}
The figure on the left shows a wood cylinder of mass M = 0.250 kg and length
L = 0.100 m, with N = 10.0 turns of wire wrapped around it longitudinally,
so that the plane of the wire coil contains the long central axis of the cylinder.
The cylinder is released on a plane inclined at an angle $\theta$ to the horizontal,
with the plane of the coil parallel to the incline plane. If there is a vertical
uniform magnetic field of magnitude 0.500 T, what is the least current i through
the coil that keeps the cylinder from rolling down the plane?
\end{minipage}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: Current loop on incline}
We take the $x$ axis to be positive down the incline.
Then the $x$ component of Newton's second law for the center of mass yields:
\begin{equation*}
M g sin\theta - f = M a
\end{equation*}
where $f$ is the force of friction, acting up the incline at the point of contact
$a$ is the cylinder's acceleration, and $M g sin\theta$ is the force of gravity
in the direction of $x$.
Since the plane of the loop is parallel to the incline, the dipole moment $\vec{m}$
is normal to the incline and it has a maginutude of:
\begin{equation*}
|\vec{m}| = I |\vec{S}| = N i L 2r
\end{equation*}
where $I$ = $Ni$ is the total current flowing in the loop ($N$ turns of current $i$)
and $|\vec{S}|$ = $L 2r$ is the area of the loop ($L$ is the length of the cylinder
and $r$ is its radius).
\end{frame}
%
%
%
\begin{frame}{Worked example: Current loop on incline}
The magnetic field produces a torque with magnitude:
\begin{equation*}
|\vec{T_B}| = |\vec{m} \times \vec{B}| = |\vec{m}| |\vec{B}| sin\theta
\end{equation*}
The force of friction produces a torque with magnitude:
\begin{equation*}
|\vec{T_f}| = f r
\end{equation*}
$\vec{T_B}$ produces an angular acceleration in the counterclockwise direction,
and $\vec{T_f}$ produces an angular acceleration in the clockwise direction.\\
\vspace{0.2cm}
Newton's second law for rotation about the center of the cylinder, gives:
\begin{equation*}
|\vec{m}| |\vec{B}| sin\theta - f r = I \alpha
\end{equation*}
where $I$ is the mass moment of inertia and
$\alpha$ is the angular acceleration.\\
\end{frame}
%
%
%
\begin{frame}{Worked example: Current loop on incline}
Since we want the current that holds the cylinder in place,
we set $a$ = 0 and $\alpha$ = 0.\\
\vspace{0.2cm}
Therefore:
\begin{equation*}
M g sin\theta - f = M a \Rightarrow f = M g sin\theta
\end{equation*}
and
\begin{equation*}
|\vec{m}| |\vec{B}| sin\theta - f r = 0 \Rightarrow
\end{equation*}
\begin{equation*}
( N i L 2r ) |\vec{B}| sin\theta - ( M g sin\theta ) r = 0 \Rightarrow
\end{equation*}
\begin{equation*}
i = \frac{Mg}{2NLB} \Rightarrow
\end{equation*}
\begin{equation*}
i = \frac{(0.250 \; kg)(9.8 \; m/s^2)}{2(10.0)(0.100 \; m)(0.500 \; T)} = 2.45 \; A
\end{equation*}
\end{frame}
} % Worked example
% ------------------------------------------------------------------------------
%
% Worked example :
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: System of 3 wires}
\begin{blockexmplque}{Question}
\begin{minipage}[r]{0.75\textwidth}
Consider 3 straight, infinitely long, coplanar,
equally spaced wires with zero radius,
each carrying a current $I$ in the same direction.
\begin{enumerate}
\item Find the positions where the magnetic field is zero.
\item Sketch the magnetic field lines.
\item If the middle wire is displaced a very small distance $x$
($x << d$) to the right (as shown in the diagram)
while the other 2 wires are held fixed,
show that it will excecute a simple harmonic oscillation.
If the wire has linear mass density $\lambda$ (mass per unit length)
find the angular frequency of oscillation.
\end{enumerate}
\end{minipage}
\begin{minipage}[l]{0.20\textwidth}
\begin{center}
\includegraphics[width=0.94\textwidth]{./images/problems/lect06_3wires_1}
\end{center}
\end{minipage}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: System of 3 wires}
The magnetic field $\vec{B}$, produced by each long straight wire
carrying a current $I$, it is azimuthal, and it is given by
\begin{equation*}
\vec{B} = \frac{\mu_0 I}{2 \pi r} \hat{\phi}
\end{equation*}
where $r$ is the distance from the wire.\\
\vspace{0.2cm}
Since the three wires are coplanar, and they carry current in the same direction
producing similar azimulthal magnetic fields,
the points of zero magnetic field must be
located between the wires, and be on the same plane as the wires.
There must be two zero-field points on each plane perpendicular to the three wires.
On each such plane, the zero-field points are between the wires and lie on the
axis that connects the wires.\\
\vspace{0.2cm}
Let $y$ be the distance between the middle wire and one of the zero-field points.
For each such point, the field from the closest
wire that lies on one side will cancel out the anti-parallel fields from the
other two wires that lie on the opposite side.
\end{frame}
%
%
%
\begin{frame}{Worked example: System of 3 wires}
Therefore, we can write:
\begin{equation*}
\frac{\mu_0 I}{2\pi(d-y)} = \frac{\mu_0 I}{2\pi y} + \frac{\mu_0 I}{2\pi(d+y)}
\end{equation*}
\begin{minipage}[r]{0.55\textwidth}
The above yields:
\begin{equation*}
\frac{1}{d-y} = \frac{1}{y} + \frac{1}{d+y} \Rightarrow
\end{equation*}
\begin{equation*}
\frac{1}{d-y} = \frac{d+2y}{y(d-y)} \Rightarrow
\end{equation*}
\begin{equation*}
y(d+y) = (d-y)(d+2y) \Rightarrow
\end{equation*}
\begin{equation*}
\cancel{yd} + y^2 = d^2 + \cancel{2yd} - \cancel{yd} - 2y^2 \Rightarrow
\end{equation*}
\begin{equation*}
3y^2 = d^2 \Rightarrow
\end{equation*}
\begin{equation*}
y = \pm \frac{d}{\sqrt{3}}
\label{eq:p3_yvalues_zeroB}
\end{equation*}
\end{minipage}
\begin{minipage}[l]{0.40\textwidth}
The magnetic field lines, are shown below:
\begin{center}
\includegraphics[width=0.50\textwidth]{./images/problems/lect06_3wires_sol_a_1}
\end{center}
\end{minipage}
\end{frame}
%
%
%
\begin{frame}{Worked example: System of 3 wires}
\begin{columns}
\begin{column}{0.40\textwidth}
If the middle wire (2) is displaced by a small distance $x$ in the direction of
the positive $x$ axis, the (attractive) forces $\vec{F}_{21}$ and $\vec{F}_{23}$
exerted on wire 2 because of wires 1 and 3, correspondingly, are shown in
the figure on the right.
\end{column}
\begin{column}{0.60\textwidth}
\begin{center}
\includegraphics[width=0.70\textwidth]{./images/problems/lect06_3wires_sol_b_1}
\end{center}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Worked example: System of 3 wires}
These forces will have the same magnitude, which given by:
\begin{equation*}
F_{21} = F_{23} = \frac{\mu_0 I^2}{2\pi \sqrt{d^2+x^2}} L
\end{equation*}
where $L$ is the length of the wires.
As it can be seen, the $y$ components of $\vec{F}_{21}$ and $\vec{F}_{23}$
cancel out. The (negative) $x$ components of both of these forces
will contribute to the total force $\vec{F}_{2}$ exerted on wire 2,
which is given by:
\begin{equation*}
\vec{F}_2 = - \Big( F_{21} cos\theta + F_{23} cos\theta \Big) \hat{x}
\end{equation*}
Using the expressions we derived for $F_{21}$ and $F_{23}$,
the above becomes:
\begin{equation*}
\vec{F}_2 = - \cancel{2} \frac{\mu_0 I^2}{\cancel{2}\pi \sqrt{d^2+x^2}} L cos\theta \hat{x}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: System of 3 wires}
Given that:
\begin{equation*}
cos\theta = \frac{x}{\sqrt{d^2+x^2}}
\end{equation*}
the previous expression for $\vec{F}_2$ can be written as:
\begin{equation*}
\vec{F}_2 = - \frac{\mu_0 I^2}{\pi} \frac{x}{d^2+x^2} L \hat{x} \xRightarrow{d^2+x^2 \approx d^2}
\end{equation*}
\begin{equation*}
\vec{F}_2 = - \frac{\mu_0 I^2 L}{\pi d^2} x \hat{x}
\end{equation*}
As it can be seen, the force is proportional and opposite to the
displacement, Hence the motion of the wire is a simple harmonic oscillation
about the equilibrium position at $x$=0.
Using Newton's second law, we can write:
\begin{equation*}
\vec{F}_2 = m \frac{d^2 x}{dt^2} \hat{x} \Rightarrow
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: System of 3 wires}
\begin{equation*}
- \frac{\mu_0 I^2 L}{\pi d^2} x \hat{x} = m \frac{d^2 x}{dt^2} \hat{x}
\xRightarrow{m = \lambda L}
\end{equation*}
\begin{equation*}
- \frac{\mu_0 I^2 L}{\pi d^2} x = \lambda L \frac{d^2 x}{dt^2} \Rightarrow
\end{equation*}
\begin{equation*}
\frac{d^2 x}{dt^2} + \frac{\mu_0 I^2}{\pi \lambda d^2} x
\end{equation*}
which has the form of the known equation of
motion for a harmonic oscillator (\"x+$\omega^2$x = 0).
From this we can deduce that the angular frequency of oscillation, $\omega$,
is given by:
\begin{equation*}
\omega = \sqrt{\frac{\mu_0 I^2}{\pi \lambda d^2}} =
\frac{I}{d} \sqrt{\frac{\mu_0}{\pi \lambda}}
\end{equation*}
\end{frame}
} % Worked example
% ------------------------------------------------------------------------------
%
% Worked example :
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: Circular coil in uniform field}
\begin{blockexmplque}{Question}
A circular coil, 0.05 m in radius, with 30 turns of wire, lies on the horizontal plane.
It carries a current of 5.0 A counterclockwise (as viewed from the top).
The coil is in a uniform magnetic field of 1.2 T directed to the right.
Find the magnetic moment and the torque on the coil in vector form.
\end{blockexmplque}
The magnetic dipole moment $\vec{m}$ of a current loop is defined as:
\begin{equation*}
\vec{m} = I \vec{S}
\end{equation*}
where I is the current flowing in the loop and $\vec{S}$ is its area.
The area of a circular coil with radius r = 0.05 m is
\begin{equation*}
S = \pi r^2 = \pi (0.05\; m)^2 = 0.00785 \; m^2
\end{equation*}
The current $I_{turn}$ flowing through each turn of wire is 5.0 A
and the coil has N = 30 turns. Hence, the total current is:
\begin{equation*}
I = N I_{turn} = 30 \cdot 5\; A = 150 \; A
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Circular coil in uniform field}
Therefore, the magnitude of the magnetic moment $\vec{m}$ is:
\begin{equation*}
|\vec{m}| = I \cdot S = \Big( 150 \; A \Big) \cdot \Big( 0.00785 \; m^2 \Big) \approx 1.18 \; A \cdot m^2
\end{equation*}
The vector $\vec{m}$ is perpendicular to the loop and points in the same
direction as your thumb if your right-hand curls in the direction of the current.
The given circular coil lies on the horizontal plane
(which we assume to be the $xy$ plane, with $x$ pointing on the right)
with $I$ flowing counterclockwisely.\\
\vspace{0.1cm}
Therefore, the direction of the magnetic moment is along $\hat{z}$:
\begin{equation*}
\vec{m} \approx \Big( 1.18 \; A \cdot m^2 \Big) \hat{z}
\end{equation*}
The torque exerted by a magnetic field is:
\begin{equation*}
\vec{T} = \vec{m} \times \vec{B} \Rightarrow
\end{equation*}
\begin{equation*}
\vec{T}
= \Big( 1.18 \; A \cdot m^2 \Big) \hat{z} \times \Big( 1.2 \; T \Big) \hat{x}
\approx \Big( 1.42 \; N \cdot m \Big) \Big( \hat{z} \times \hat{x} \Big)
= \Big( 1.42 \; N \cdot m \Big) \hat{y}
\end{equation*}
\end{frame}
} % Worked example
% ------------------------------------------------------------------------------
%
% Worked example :
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: Magnetic field of cylindrical conductor}
\begin{blockexmplque}{Question}
A long non-magnetic cylindrical conductor with inner radius $a$
and outer radius $b$ carries a current $I$ which flows along the
direction of the axis of symmetry of the cylinder.
Assume that the current density in the conductor is uniform.\\
\vspace{0.2cm}
The current $I$ produces a magnetic field $\vec{B}$.
Find the magnetic field $\vec{B}$ as a function of the radial
co-ordinate $r$ and express it in vector form for the following cases:\\
\vspace{0.2cm}
\begin{itemize}
\item inside the hollow space ($r < a$),
\item within the cylindrical conductor ($a < r < b$), and
\item outside the conductor ($r > a$).
\end{itemize}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: Magnetic field of cylindrical conductor}
For the calculation of the magnetic field in this cylindrically-symmetric
problem we will use Ampere's circuital law for a closed path $L$
\begin{equation*}
\oint_{L} \vec{B} \cdot d\vec{\ell} = \mu_0 I_{enc}
\end{equation*}
where $I_{enc}$ is the current that flows through the open surface $S(L)$
that has the closed path $L$ as its boundary:
\begin{equation*}
I_{enc} = \int_{S(L)} \vec{j} \cdot d\vec{S}
\end{equation*}
The uniform current density $j$, within the conductor,
can be written as the ratio of the
total current $I$ over the area of a cross-section of the cylinder
perpendicular to the direction of the current flow.
If the axis of the cylinder is the $z$ axis, and the current flows
in the positive direction, we can write:
\begin{equation*}
\vec{j} = \frac{I}{\pi(b^2-a^2)} \hat{z} \;\;\;\;\; (\text{for } a < r < b)
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Magnetic field of cylindrical conductor}
For {\em any} closed path $L$ in the region $r<a$,
$I_{enc}$ = 0. Ampere's law yields:
\begin{equation*}
\oint_{L} \vec{B} \cdot d\vec{\ell} = 0
\end{equation*}
Since this is true for any arbitrary closed path, it can not be the
result of an accidental cancellation and it has to be the
integrand itself that is zero.\\
Therefore, for $r<a$:
\begin{equation*}
B = 0
\end{equation*}
For $a<r<b$, in order to exploit the cylindrical symmetry of the problem
in the application of Ampere's law, we choose a circular integration path $L$
with radius $r$ whose centre is on the symmetry axis of the cylinder.\\
The current $I_{enc}$ that flows through the area $S$ of a circle
that has $L$ as its boundary and it is perpendicular to $\vec{j}$,
is given by:\\
\begin{equation*}
I_{enc} = \int_{S(L)} \vec{j} \cdot d\vec{S} = jS =
I \frac{r^2-a^2}{b^2-a^2}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Magnetic field of cylindrical conductor}
Substituting the above in Ampere's circuital law,
and considering that, due to symmetry, $\vec{B}$ is an azimuthal vector
and, along $L$, the vectors $\vec{B}$ and $d\vec{\ell}$
are co-linear, we obtain:
\begin{equation*}
B 2\pi r = \mu_0 I \frac{r^2-a^2}{b^2-a^2} \Rightarrow
B = \frac{\mu_0 I}{2\pi r} \frac{r^2-a^2}{b^2-a^2}
\end{equation*}
Therefore, for $a<r<b$:
\begin{equation*}
\displaystyle
\vec{B} = \frac{\mu_0 I}{2\pi r} \frac{r^2-a^2}{b^2-a^2} \hat{\phi}
\end{equation*}
For $r>b$, we can use similar procedure and arguments
as in the case of $a<r<b$, but with:
\begin{equation*}
I_{enc} = I
\end{equation*}
since our integration path includes the full cylindrical conductor.
% An application of Ampere's circuital law in this case yields
% \begin{equation*}
% B 2\pi r = \mu_0 I \Rightarrow
% B = \frac{\mu_0 I}{2\pi r}
% \end{equation*}
Therefore, for $r>b$:
\begin{equation*}
\displaystyle
\vec{B} = \frac{\mu_0 I}{2\pi r} \hat{\phi}
\end{equation*}
\end{frame}
} %Worked example
% ------------------------------------------------------------------------------
{
\problemslide
%
%
%
\begin{frame}{Worked example: Magnetic flux through half cylinder}
\begin{blockexmplque}{Question}
Two wires, parallel to a z axis and a distance 4$r$ apart,
carry equal currents $i$ in opposite directions, as shown below.
A circular cylinder of radius $r$ and length $L$ has its axis on the z axis,
midway between the wires. Use Gauss' law for magnetism to derive an expression
for the net outward magnetic flux through the half of the cylindrical
surface above the x axis.\\
\begin{center}
\includegraphics[width=0.50\textwidth]{./images/problems/lect06_2_wires_magnetic_flux_half_cylinder}
\end{center}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: Magnetic flux through half cylinder}
Let S$_1$ be the half of the cylindrical surface (above the x axis) for which
we are interested in calculating the magnetic flux, and
S$_2$ be the portion of the xz plane that lies within the cylinder.\\
\vspace{0.2cm}
Each of the wires 1 and 2 produces an azimulthal magnetic field, as shown on
the figure below. The total magnetic field has no z component.
\begin{center}
\includegraphics[width=0.50\textwidth]{./images/problems/lect06_2_wires_magnetic_flux_half_cylinder_2}
\end{center}
\end{frame}
%
%
%
\begin{frame}{Worked example: Magnetic flux through half cylinder}
From Gauss' law for magnetism, the flux through the closed surface formed by
S$_1$, S$_2$ and two end-cups on the $xy$ plane (through which there
is no flux, since the field of each wire is azimuthal) is zero. Therefore:
\begin{equation*}
\Phi_{S_1} + \Phi_{S_2} = 0 \Rightarrow \Phi_{S_1} = -\Phi_{S_2}
\end{equation*}
So we can obtain the flux through the half-cylindrical surface S$_1$, by calculating the
flux through the planar surface S$_2$. The latter is a much easier calculation.
The total magnetic flux through the surface S$_2$ is given by
\begin{equation*}
\Phi_{S_2} = \int_{S_2} \vec{B} \cdot d\vec{S}
\end{equation*}
The total field $\vec{B}$ is the superposition of the fields $\vec{B}_1$ and
$\vec{B}_2$ produced by the wires 1 and 2 respectively.
\begin{equation*}
\vec{B} = \vec{B}_1 + \vec{B}_2
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Magnetic flux through half cylinder}
The field produced by a long straight wire with current $I_k$ is given by
\begin{equation*}
\vec{B}_{k} = \frac{\mu_0 I_k}{2\pi r_k} \hat{\phi_k}
\end{equation*}
where $r_k$ is the distance from the wire and $\hat{\phi_k}$
is the azimuthal direction around that wire.\\
\vspace{0.1cm}
The current in wire 1 travels along $\hat{z}$ (out of the page) and therefore
its magnetic field, as viewed from above, rotates anticlockwisely.
On the surface S$_2$, the field $\vec{B}_{1}$ points along $\hat{y}$.
Similarly,
the current in wire 2 travels along -$\hat{z}$ (into the page) and therefore
its magnetic field, as viewed from above, rotates clockwisely.
On the surface S$_2$, the field $\vec{B}_{2}$ points along $\hat{y}$ too.\\
\vspace{0.1cm}
So, in summary, on the surface S$_2$:
\begin{equation*}
\vec{B}_{1} = \frac{\mu_0 i}{2\pi r_1} \hat{y} = \frac{\mu_0 i}{2\pi (2r+x)} \hat{y}
\;\;\;\;\; \text{and} \;\;\;\;\;
\vec{B}_{2} = \frac{\mu_0 i}{2\pi r_2} \hat{y} = \frac{\mu_0 i}{2\pi (2r-x)} \hat{y}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Magnetic flux through half cylinder}
By convention, the unit vector for each element of a closed surface points outwards,
so the surface vector of S$_2$ points towards -$\hat{y}$.
Therefore, $\Phi_{S_2}$ is:
\begin{equation*}
\Phi_{S_1} =
- \Phi_{S_2} =
- \int_{S_2} (\vec{B}_1 + \vec{B}_2) \cdot d\vec{S}
\end{equation*}
\begin{equation*}
= \frac{\mu_0 i L}{2\pi}
\big\{
\int_{-r}^{+r} \frac{dx}{2r+x} +
\int_{-r}^{+r} \frac{dx}{2r-x}
\big\}
= \frac{\mu_0 i L}{2\pi}
\big\{
\int_{-r}^{+r} \frac{d(2r+x)}{2r+x} -
\int_{-r}^{+r} \frac{d(2r-x)}{2r-x}
\big\}
\end{equation*}
\begin{equation*}
=
\frac{\mu_0 i L}{2\pi}
\big\{
ln(2r+x) \rvert_{-r}^{+r} -
ln(2r-x) \rvert_{-r}^{+r}
\big\}
\end{equation*}
\begin{equation*}
=
\frac{\mu_0 i L}{2\pi}
\big\{
(ln(3r) - ln(r)) -
(ln(r) - ln(3r)
\big\}
= \frac{\mu_0 i L}{2\pi}
(2ln(3r) - 2ln(r))
= \frac{\mu_0 i L}{2\pi} 2 ln3 \Rightarrow
\end{equation*}
\begin{equation*}
\Phi_{S_1} =
\frac{\mu_0 i}{\pi} L ln3
\end{equation*}
\end{frame}
} %Worked example
% ------------------------------------------------------------------------------
%
% Worked example :
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: Magnetic forces between 5 parallel wires}
\begin{blockexmplque}{Question}
In the figure below, five long parallel wires in an $xy$ plane are separated
by distance $d$, have lengths $L$, and carry identical currents $I$ out of the page.
Each wire experiences a magnetic force due to the currents in the other wires.\\
\begin{center}
\includegraphics[width=0.45\textwidth]{./images/problems/lect06_5_parallel_wires.png}
\end{center}
\vspace{0.2cm}
In unit vector notation, what is the net magnetic force on
i) wire 1, ii) wire 2, iii) wire 3, iv) wire 4 and v) wire 5?
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: Magnetic forces between 5 parallel wires}
The force between 2 parallel straight wires $i$ and $j$ of length $L$,
carrying currents $I_i$ and $I_j$ respectively, is given by
\begin{equation*}
|\vec{F}_{ij}| = \frac{\mu_0 I_{i} I_{j} L}{2 \pi r}
\end{equation*}
The force is attractive if the currents have the same direction,
and repulsive if they have opposite direction. \\
\vspace{0.2cm}
Using the superposition principle, we can write the total magnetic force
$\vec{F}_{1}$ on wire 1, as:
\begin{equation*}
\vec{F}_{1} = \vec{F}_{12} + \vec{F}_{13} + \vec{F}_{14} + \vec{F}_{15}
\end{equation*}
where $\vec{F}_{1j}$ ($j$=2,3,4,5) is the force on wire 1 due to wire $j$.\\
\vspace{0.2cm}
Using the earlier expression for the magnetic force between wires, we find:
\begin{equation*}
\vec{F}_{1} =
\frac{\mu_0 I^2 L}{2 \pi}
\Big( \frac{1}{d} + \frac{1}{2d} + \frac{1}{3d} + \frac{1}{4d} \Big) \hat{y} =
\frac{25 \mu_0 I^2 L}{24 \pi d} \hat{y}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Magnetic forces between 5 parallel wires}
Similarly, for wire 2, we have:
\begin{equation*}
\vec{F}_{2} = \vec{F}_{21} + \vec{F}_{23} + \vec{F}_{24} + \vec{F}_{25} \Rightarrow
\end{equation*}
\begin{equation*}
\vec{F}_{2} =
\frac{\mu_0 I^2 L}{2 \pi}
\Big( - \frac{1}{d} + \frac{1}{d} + \frac{1}{2d} + \frac{1}{3d} \Big) \hat{y} =
\frac{5 \mu_0 I^2 L}{12 \pi d} \hat{y}
\end{equation*}
\vspace{0.2cm}
From the symmetry of the problem, we see that
the magnetic force on wire 3 due to the wires 1,2
has the same magnitude as the force on wire 3 due to the wires 4,5
but opposite direction. Therefore:
\begin{equation*}
\vec{F}_{3} = \vec{0}
\end{equation*}
Sumilarly, due to the symmetry of the problem, we have:
\begin{equation*}
\vec{F}_{4} = - \vec{F}_{2} = - \frac{5 \mu_0 I^2 L}{12 \pi d} \hat{y}
\end{equation*}
\begin{equation*}
\vec{F}_{5} = - \vec{F}_{1} = - \frac{25 \mu_0 I^2 L}{24 \pi d} \hat{y}
\end{equation*}
\end{frame}
} %Worked example
% ------------------------------------------------------------------------------
%
% Worked example :
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: Magnetic moment of 2 concentric loops}
\begin{blockexmplque}{Question}
\begin{columns}
\begin{column}{0.65\textwidth}
Two concentric, circular wire loops of radii $r_1$ = 20 cm and $r_2$ = 30 cm,
are located in an $xy$ plane. Each wire loop carries a clockwise current $I$ = 7 A.
\begin{itemize}
\item Find the magnitude of the net magnetic dipole moment of the system.
\item If the current in the inner loop is reversed, what is the new
magnitude of the net magnetic dipole moment of the system?
\end{itemize}
\end{column}
\begin{column}{0.35\textwidth}
\begin{center}
\includegraphics[width=0.95\textwidth]{./images/problems/lect06_2_concentric_wire_loops.png}
\end{center}
\end{column}
\end{columns}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: Magnetic moment of 2 concentric loops}
The magnetic dipole moment $\vec{m}$ of circular loop on the $xy$
plane, with a current $I$ running counterclockwise (as viewed
from a point in the positive $z$ axis), is given by:
\begin{equation*}
\vec{m} = I \vec{S} = I \pi r^2 \hat{z}
\end{equation*}
The magnetic dipole moments of the two concentric circular loops
can be superimposed:
\begin{equation*}
\vec{m} = \vec{m}_1 + \vec{m}_2
\end{equation*}
Therefore, the net magnetic dipole of the system
is given by:
\begin{equation*}
\vec{m} = \vec{m}_1 + \vec{m}_2
= \Big(-I \pi r^2_1 - I \pi r^2_2 \Big) \hat{z}
= (-2.86 \; A m^2) \hat{z}
\end{equation*}
If the current of the inner loop is reversed,
the net magnetic dipole of the system becomes:
\begin{equation*}
\vec{m} = \vec{m}_1 + \vec{m}_2
= \Big(+I \pi r^2_1 - I \pi r^2_2 \Big) \hat{z}
= (-1.10 \; A m^2) \hat{z}
\end{equation*}
\end{frame}
} %Worked example
% ------------------------------------------------------------------------------