-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathslides_lecture07_main.tex
1207 lines (956 loc) · 33.2 KB
/
slides_lecture07_main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\renewcommand{\prevlecture}{6 }
\renewcommand{\thislecture}{7 }
\renewcommand{\nextlecture}{8 }
%
% Cover page
%
\title[PHYS 201 / Lecture \thislecture]
{
PHYS 201 / Lecture \thislecture\\
{\it
Magnetization; H-field; Ampere's law in materials;\\
Diamagnetism, Paramagnetism and Ferromagnetism;
}\\
}
\input{slides_author.tex}
\begin{frame}[plain]
\titlepage
\end{frame}
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
% Revision of previous lecture
%
\renewcommand{\lecturesummarytitle}{Revision }
\input{slides_lecture06_summary.tex}
%
% Plan for this lecture
%
\begin{frame}{Plan for Lecture \thislecture}
In this lecture:
\begin{itemize}
\item We will discuss the magnetic properties of materials
({\bf diamagnetism}, {\bf paramagnetism} and {\bf ferromagnetism} (*))
and develop arguments to understand the physical origins.
\item We will complete the study of {\bf Maxwell's eqs. in materials (for static fields)}.
\end{itemize}
\vspace{0.1cm}
\noindent\rule{2cm}{0.4pt}\\
{\small
(*) There are other types of magnetism too:
{\em antiferromagnetism}, {\em ferrimagnetism}, {\em superparamagnetism},
{\em metamagnetism}. We will neglect these.\\
(**) In this lecture, quite often, I will remind you of what I discussed a few
weeks ago in the lecture on dielectrics and polarisation.\\
The physical origins of the magnetisation and polarisation effects are
very different. But, surprisingly, {\bf the maths are very very similar}.
}
\end{frame}
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
%
%
\begin{frame}{Magnetic properties of materials}
The material which has the {\bf most striking and well known magnetic properties is iron (Fe).}
\begin{columns}
\begin{column}{0.48\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/photos/lodestone_1.jpg}\\
\end{center}
\end{column}
\begin{column}{0.52\textwidth}
Similar properties are exhibited by
\begin{itemize}
\item {\bf nickel (Ni)}, \\
\item {\bf cobalt (Co)}, \\
\item {\bf gadolinium (Gd)}, and \\
\item {\bf dysprosium (Dy)}. \\
\end{itemize}
\vspace{0.2cm}
We call these materials {\bf ferromagnets}.
Ferromagnetism is due to a quantum effect called
{\em exchange coupling}.
\end{column}
\end{columns}
\vspace{0.4cm}
Not only these materials can have a significant magnetisation when inside an external magnetic field,
they also {\bf retain their magnetisation in the absence of an external magnetic field.}
\end{frame}
%
%
%
\begin{frame}{Magnetic properties of materials}
But {\bf other substances get magnetised too.}
\begin{columns}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.90\textwidth]{./images/photos/levitating_frog_01.jpg}\\
\end{center}
\end{column}
\begin{column}{0.50\textwidth}
\begin{itemize}
\item It might seem odd but, {\bf water} can be magnetised!
\item {\bf Wood} can be magnetised!
\item {\bf Frogs} can be magnetised!
\item And, of course, {\bf you} can be magnetised too!
\end{itemize}
\end{column}
\end{columns}
\vspace{0.4cm}
But you can not attract wood with a horseshoe magnet.
And you need an enormous magnetic field ($\sim$ 15 T) to levitate a frog.\\
\vspace{0.3cm}
The magnetic effects for these materials are {\bf very very weak!}
\begin{itemize}
\item $\sim$million times weaker than the effects in ferromagnetic materials.
\end{itemize}
Moreover, water, wood and frogs do not remain magnetized once the external magnetic field is removed.
\end{frame}
%
%
%
\begin{frame}{Magnetic properties of materials}
The materials that exhibit weaker and non-permanent magnetic effects
have a rather {\bf odd behaviour} in the following sense:\\
\vspace{0.3cm}
Recall that an {\bf electric field polarises a dielectric in}
(more or less) {\bf the direction of the field}.
However, in the presence of a magnetic field, some substances get
magnetised in the direction of the field and some in the opposite direction!
\vspace{0.2cm}
\begin{itemize}
\item Substances that get {\bf magnetised in the direction of the magnetic field},
are called {\bf \color{blue} paramagnetic}.
\item Substances that get {\bf magnetised in the direction opposite to the magnetic field},
are called {\bf \color{magenta} diamagnetic}.
\end{itemize}
\vspace{0.3cm}
What physics underpins that difference in the magnetic behaviour?\\
\vspace{0.2cm}
We will develop (..wrong) classical arguments to understand these effects.
\end{frame}
% starting reminder
{
\reminderslide
%
%
%
\begin{frame}{Reminder: Electric dipole moments and polarization}
\begin{columns}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/schematics/electric_dipole_moment_01.png}\\
\end{center}
\end{column}
\begin{column}{0.50\textwidth}
An electric dipole its described by its electric dipole moment $\vec{p}$
(a vector, pointing from the - to the + charge):
\begin{equation*}
\vec{p} = q \vec{d}
\end{equation*}
\end{column}
\end{columns}
\begin{columns}
\begin{column}{0.60\textwidth}
An external electric field {\bf induces a dipole moment} in the
direction of the field, or {\bf rotates polar molecules}
towards the direction of the field. \\
\vspace{0.2cm}
The {\bf torque} $\vec{T}$ is given by: $\vec{T} = \vec{p} \times \vec{E}$
\end{column}
\begin{column}{0.40\textwidth}
\begin{center}
\includegraphics[width=0.70\textwidth]{./images/schematics/electric_dipole_moment_torque.png}\\
\end{center}
\end{column}
\end{columns}
\vspace{0.2cm}
The net effect is that matter gets {\bf polarised at a macroscopic level}
(not just at the level of individual atoms or molecules).\\
\vspace{0.2cm}
We defined the {\bf polarisation} $\vec{P}$
as the {\bf amount of electric dipole moment per unit volume}.
\end{frame}
%
%
%
\begin{frame}{Reminder: Electric dipole moments and polarization}
In a polarised material, there is accumulation of {\bf induced charge}:\\
Both {\em \bf surface} and {\em \bf volume} charge is induced.\\
\begin{columns}
\begin{column}{0.20\textwidth}
\begin{center}
\includegraphics[width=0.92\textwidth]{./images/schematics/divergent_polarization.png}\\
\end{center}
\end{column}
\begin{column}{0.80\textwidth}
\begin{center}
\includegraphics[width=0.95\textwidth]{./images/schematics/polarization_charges.png}\\
\end{center}
\end{column}
\end{columns}
We convinced ourselves that the density of the surface charge is $\displaystyle \sigma_{P} = \vec{P} \hat{n}$
where $\hat{n}$ is a unit vector normal to the surface,
whereas the density of the volume charge is $\displaystyle \rho_{P} = - \vec{\nabla} \vec{P}$.
\vspace{0.1cm}
The charges induced by polarisation,
{\bf create their own electric field $\vec{E}_{P}$ that opposes the external electric field.}
\begin{equation*}
\vec{E}_{P}(\vec{r}) = - \vec{\nabla} V_{P}(\vec{r})
\end{equation*}
\begin{equation*}
V_{P}(\vec{r}) =
\frac{1}{4\pi \epsilon_0} \int \frac{1}{|\vec{r} - \pvec{r}'|} \sigma_{P} (\pvec{r}') dS^{\prime} +
\frac{1}{4\pi \epsilon_0} \int \frac{1}{|\vec{r} - \pvec{r}'|} \rho_{P} (\pvec{r}') d\tau^{\prime}
\end{equation*}
\end{frame}
} % ending reminder
%
%
%
\begin{frame}{Magnetic dipole moment and magnetization}
The situation in magnetism is very very similar (at least mathematically).\\
\vspace{0.2cm}
\begin{columns}
\begin{column}{0.25\textwidth}
\begin{center}
\includegraphics[width=0.95\textwidth]{./images/schematics/magnetic_dipole_moment_00.jpg}\\
\end{center}
\end{column}
\begin{column}{0.70\textwidth}
We defined the {\bf magnetic dipole moment} $\vec{m}$ as:
\begin{equation*}
\vec{m} = I \vec{S}
\end{equation*}
\end{column}
\end{columns}
\vspace{0.2cm}
An external magnetic field $\vec{B}$ exerts a torque $\vec{T}$ on a magnetic dipole $\vec{m}$ which is given by:
\begin{equation*}
\vec{T} = \vec{m} \times \vec{B}
\end{equation*}
This will tend to {\bf align} the previously randomised {\bf magnetic moments}
and {\bf create magnetisation at a macroscopic level}.\\
\vspace{0.2cm}
We define {\bf magnetisation} $\vec{M}$ as the amount of {\bf magnetic dipole moment per unit volume}.
\end{frame}
%
%
%
\begin{frame}{Magnetization-induced currents}
The {\bf magnetisation induces surface and volume currents}.\\
\vspace{0.3cm}
We can easily be convinced, although we will not show it mathematically,
that the {\bf density of the surface current} is:
\begin{equation*}
j_{m}^{surf} = \vec{M} \times \hat{n}
\end{equation*}
\vspace{0.1cm}
whereas the {\bf density of the volume current} is:
\begin{equation*}
j_{m}^{vol} = \vec{\nabla} \times \vec{M}
\end{equation*}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/schematics/magnetization_currents_01.png}\\
\end{center}
\end{frame}
%
%
%
\begin{frame}{Correspondence between quantities}
{
\setlength{\extrarowheight}{14pt}
\setlength{\arraycolsep}{5pt}
\begin{center}
\begin{table}[H]
\begin{tabular}{c|c||c|c}
\hline
\multicolumn{2}{c||}{\bf Electrostatics} &
\multicolumn{2}{c} {\bf Magnetostatics} \\
\hline
{\scriptsize electric dipole moment} &
$\vec{p} = q \vec{d}$ &
$\vec{m} = I \vec{S}$ &
{\scriptsize magnetic dipole moment} \\
\hline
{\scriptsize torque within $\vec{E}$ field} &
$\vec{T} = \vec{p} \times \vec{E}$ &
$\vec{T} = \vec{m} \times \vec{B}$ &
{\scriptsize torque within a $\vec{B}$ field} \\
\hline
{\scriptsize polarization} &
$\vec{P} = \frac{(e.d.m)}{volume}$ &
$\vec{M} = \frac{(m.d.m)}{volume}$ &
{\scriptsize magnetization} \\
\hline
{\scriptsize surface charge density} &
$\sigma_{P} = \vec{P} \cdot \hat{n}$ &
$j_{m}^{surf} = \vec{M} \times \hat{n}$ &
{\scriptsize surface current density} \\
\hline
{\scriptsize volume charge density} &
$\rho_{P} = - \vec{\nabla} \cdot \vec{P}$ &
$j_{m}^{vol} = \vec{\nabla} \times \vec{M}$ &
{\scriptsize volume current density} \\
\hline
\end{tabular}
\end{table}
\end{center}
}
\end{frame}
%
%
%
\begin{frame}{Ampere's law in materials}
Recall {\bf Ampere's law in vacuum}:
\begin{equation*}
\oint_{L} \vec{B} \cdot d\vec{\ell} = \mu_0 \int_{S(L)} \vec{j} \cdot d\vec{S} \;\;
{\color{blue}(integral\;form)},
\;\;\;\;\;
\vec{\nabla} \times \vec{B} = \mu_0 \vec{j} \;\;
{\color{blue}(differential\;form)}
\end{equation*}
Ampere's law,
\begin{itemize}
\item in integral form, connects the line integral of the
magnetic field $\vec{B}$ along a closed path L with the current I
flowing through the surface S(L) defined by the closed path L, and,
\item in differential form, connects the rotation of the magnetic field,
at any point in space, with the local current density $\vec{j}$.\\
\end{itemize}
\vspace{0.2cm}
Our {\bf objective is to re-formulate Ampere's law for materials} where, \\
{\bf in addition to free currents}, we have {\bf magnetization-induced currents}.\\
\vspace{0.2cm}
Recall that we did something very similar with Gauss's law in electrostatics. \\
\end{frame}
% starting reminder
{
\reminderslide
%
%
%
\begin{frame}{Reminder: Gauss' law in materials}
We started from Gauss’ law in vacuum:
\begin{equation*}
\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}
\end{equation*}
and wrote the total charge density $\rho$ as the sum of the free ($\rho_{f}$)
and polarisation ($\rho_{P}$) charge densities:
\begin{equation*}
\vec{\nabla} \cdot \vec{E} = \frac{\rho_{f} + \rho_{P}}{\epsilon_0}
\end{equation*}
The polarisation charge density $\rho_{P}$ is given, in terms of the polarisation field $\vec{P}$, by:
\begin{equation*}
\rho_{P} = - \vec{\nabla}\cdot\vec{P}
\end{equation*}
and, therefore, Gauss' law becomes:
\begin{equation*}
\vec{\nabla} \cdot \vec{E} = \frac{\rho_{f} - \vec{\nabla} \cdot \vec{P}}{\epsilon_0}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Reminder: Gauss' law in materials}
We collected all the divergences together and we obtained:
\begin{equation*}
\vec{\nabla} \cdot \Big( \epsilon_0 \vec{E} + \vec{P} \Big) = \rho_{f}
\end{equation*}
This is the differential form of Gauss's law in materials.\\
\vspace{0.2cm}
We defined the electric displacement $\vec{D}$ as:
\begin{equation*}
\vec{D} = \epsilon_0 \vec{E} + \vec{P}
\end{equation*}
and, therefore, Gauss's law in materials was written as:
\begin{equation*}
\vec{\nabla} \cdot \vec{D} = \rho_{f}
\end{equation*}
In integral form, Gauss's law in materials becomes:
\begin{equation*}
\oint_{S} \vec{D} \cdot d\vec{S} = \int_{\tau(S)} \rho_{f} d\tau = Q_{f}
\end{equation*}
\end{frame}
} % ending reminder
%
%
%
%
\begin{frame}{Ampere's law in materials}
Similarly, starting from Ampere's law in vacuum:
\begin{equation*}
\vec{\nabla} \times \vec{B} = \mu_0 \vec{j}
\end{equation*}
we can write the total current density $\vec{j}$ as the vector sum of the free ($\vec{j}_{f}$)
and magnetization ($\vec{j}_{m}$) current densities:
\begin{equation*}
\vec{\nabla} \times \vec{B} = \mu_0 \Big( \vec{j}_{f} + \vec{j}_{m} \Big)
\end{equation*}
Expressing the magnetization current density $\vec{j}_{m}$ in terms of the
magnetization field $\vec{M}$:
\begin{equation*}
\vec{j}_{m} = \vec{\nabla} \times \vec{M}
\end{equation*}
we can write Ampere's law as:
\begin{equation*}
\vec{\nabla} \times \vec{B} = \mu_0 \Big( \vec{j}_{f} + \vec{\nabla} \times \vec{M} \Big)
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Ampere's law in materials}
Dividing with $\mu_0$ and collecting the curls together and get:
\begin{equation*}
\vec{\nabla} \times \frac{\vec{B}}{\mu_0} = \vec{j}_{f} + \vec{\nabla} \times \vec{M} \Rightarrow
\vec{\nabla} \times \Big( \frac{\vec{B}}{\mu_0} - \vec{M} \Big) = \vec{j}_{f}
\end{equation*}
We define the {\bf magnetic field strength} or {\bf magnetic field intensity} $\vec{H}$ as:
\begin{equation*}
\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M}
\end{equation*}
we can write the differential form of Ampere's law in materials as:
\begin{equation*}
\vec{\nabla} \times \vec{H} = \vec{j}_{f}
\end{equation*}
Using Stokes' theorem, as we have done several times in past lectures,
we can go to the integral form of Ampere's law in materials which is:
\begin{equation*}
\oint_{L} \vec{H} \cdot d\vec{\ell} = \int_{S(L)} \vec{j}_{f} \cdot d\vec{S} = I_{f}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{The ``{\em H field}''}
In SI, the quantity $\displaystyle \vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M}$ has {\bf units of A/m}.\\
\vspace{0.1cm}
$\vec{H}$ plays a role analogous to $\vec{D}$ in electrostatics:
It allows us to write Ampere's law in terms of the free currents alone.\\
\vspace{0.1cm}
We called $\vec{H}$ {\bf magnetic field strength} or {\bf magnetic field intensity}.\\
\begin{itemize}
{\small
\item
Some textbooks also call $\vec{H}$ the ... {\bf auxiliary field}.\\
\item
Other textbooks call $\vec{H}$ the {\bf magnetic field}, and then call $\vec{B}$ something else
(typically, magnetic induction). Confusion is inevitabe!\\
\item
Sometimes, $\vec{H}$ is called the {\bf magnetising field} - I like this best.\\
\item
Griffiths makes a good suggestion:
{\em "H has no sensible name. Just call it H."} (at least we all agree on the symbol).\\
}
\end{itemize}
\vspace{0.1cm}
Typically, it is easier to think in terms of $\vec{H}$ and $\vec{E}$:
At the Lab we control free currents (hence $\vec{H}$) and the voltage of EMF sources (hence $\vec{E}$).\\
But let's not be confused: {\bf $\vec{B}$ and $\vec{E}$ are the fundamental quantities}.
\end{frame}
% starting reminder
{
\reminderslide
%
%
%
\begin{frame}{Reminder: Electric susceptibility}
The Gauss' law in materials is:
$\displaystyle \vec{\nabla} \cdot \Big( \epsilon_0 \vec{E} + \vec{P} \Big) = \rho_{f}$\\
\vspace{0.2cm}
The polarisation vector $\vec{P}$ can be expressed in terms of $\vec{E}$:
\begin{equation*}
\vec{P} = \chi_e \epsilon_0 \vec{E}
\end{equation*}
where $\chi_e$ is the so-called {\bf electric susceptibility} (dimensionless).\\
\vspace{0.2cm}
For {\bf linear dielectrics} (and low intensity fields) $\chi_e$ is a
constant that does not depend on $\vec{E}$.
Therefore, Gauss' law can be written as:
\begin{equation*}
\vec{\nabla} \cdot \Big( \epsilon_0 \vec{E} + \chi_e \epsilon_0 \vec{E} \Big) = \rho_{f} \Rightarrow
(1+\chi_e) \epsilon_0 \vec{\nabla} \cdot \vec{E} = \rho_{f} \Rightarrow
\epsilon_r \epsilon_0 \vec{\nabla} \cdot \vec{E} = \rho_{f} \Rightarrow
{\color{magenta}
\epsilon \vec{\nabla} \cdot \vec{E} = \rho_{f}
}
\end{equation*}
where the factor $\epsilon_r = 1+\chi_e$
is the {\bf relative permittivity} or {\bf dielectric constant} (dimensionless) and
$\epsilon = \epsilon_r \epsilon_0$ is the {\bf permittivity} of the dielectric
(SI unit: $A \cdot s \cdot V^{-1} \cdot m^{-1}$).\\
\end{frame}
} % ending reminder
%
%
%
\begin{frame}{Magnetic susceptibility}
Ampere's law in materials is:
$\displaystyle \vec{\nabla} \times \Big( \frac{\vec{B}}{\mu_0} - \vec{M} \Big) = \mu_0 \vec{j}_{f}$\\
\vspace{0.1cm}
If the analogy with electrostatics was exact,
we would write $\vec{M}$ in terms of $\vec{B}$.
However, this is where the analogy breaks.
Instead we typically write:
\begin{equation*}
{\color{magenta}
\vec{M} = \chi_{m} \vec{H}
}
\end{equation*}
where $\chi_m$ is the {\bf magnetic susceptibility}.
For {\bf linear materials}, $\chi_m$ is a constant independent of the value of $\vec{H}$.
Expressing $\vec{B}$ in terms of $\vec{H}$:
\begin{equation*}
\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M} \Rightarrow
\vec{B} = \mu_0 \Big( \vec{H} + \vec{M} \Big) \xRightarrow{\vec{M} = \chi_{m} \vec{H}}
\vec{B} = \Big(1 + \chi_{m} \Big) \mu_0 \vec{H} \Rightarrow
\end{equation*}
\begin{equation*}
\vec{B} = \mu_r \mu_0 \vec{H} \Rightarrow
{\color{magenta}
\vec{B} = \mu \vec{H}
}
\end{equation*}
where $\mu_r = 1+\chi_{\mu}$
is the {\bf relative permeability} (dimensionless) and
$\mu = \mu_r \mu_0$ is the {\bf permeability} of the material
(SI unit: $V \cdot s \cdot A^{-1} \cdot m^{-1}$).\\
\end{frame}
%
%
%
\begin{frame}{Correspondence between quantities}
{
\setlength{\extrarowheight}{8pt}
\setlength{\arraycolsep}{5pt}
\begin{center}
\begin{table}[H]
\begin{tabular}{c|c||c|c}
\hline
\multicolumn{2}{c||}{\bf Electrostatics} &
\multicolumn{2}{c} {\bf Magnetostatics} \\
\hline
{\scriptsize electric dipole moment} &
$\vec{p} = q \vec{d}$ &
$\vec{m} = I \vec{S}$ &
{\scriptsize magnetic dipole moment} \\
\hline
{\scriptsize torque within $\vec{E}$ field} &
$\vec{T} = \vec{p} \times \vec{E}$ &
$\vec{T} = \vec{m} \times \vec{B}$ &
{\scriptsize torque within a $\vec{B}$ field} \\
\hline
{\scriptsize polarization} &
$\vec{P} = \frac{(e.d.m)}{volume}$ &
$\vec{M} = \frac{(m.d.m)}{volume}$ &
{\scriptsize magnetization} \\
\hline
{\scriptsize surface charge density} &
$\sigma_{P} = \vec{P} \cdot \hat{n}$ &
$j_{m}^{surf} = \vec{M} \times \hat{n}$ &
{\scriptsize surface current density} \\
\hline
{\scriptsize volume charge density} &
$\rho_{P} = - \vec{\nabla} \cdot \vec{P}$ &
$j_{m}^{vol} = \vec{\nabla} \times \vec{M}$ &
{\scriptsize volume current density} \\
\hline
{\scriptsize electric displacement} &
$\vec{D} = \epsilon_0 \vec{E} + \vec{P}$ &
$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M}$ &
{\scriptsize magnetizing field} \\
\hline
\multirow{2}{*}{\scriptsize Gauss' law in materials} &
$\vec{\nabla} \cdot \vec{D} = \rho_{f}$ &
$\vec{\nabla} \times \vec{H} = \vec{j}_{f}$ &
\multirow{2}{*}{\scriptsize Ampere's law in materials} \\
\hhline{~--~}
&
$\oint_{S} \vec{D} \cdot d\vec{S} = Q_{f}$ &
$\oint_{L} \vec{H} \cdot d\vec{\ell} = I_{f}$ &
\\
\hline
\end{tabular}
\end{table}
\end{center}
}
\end{frame}
%
%
%
\begin{frame}{Maxwell's equations we know so far}
{\small
\begin{center}
{
\begin{table}[H]
\begin{tabular}{|l|c|c|}
\hline
\multicolumn{3}{|l|} {
{\color{magenta}
{\bf Static case in vacuum}
}
}\\
\hline
{\bf Gauss's law} &
$\displaystyle \oint \vec{E} \cdot d\vec{S} = \frac{1}{\epsilon_0} \int \rho d\tau = \frac{Q}{\epsilon_0}$ &
$\displaystyle \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$ \\
{\bf Circuital law} &
$\displaystyle \oint \vec{E} \cdot d\vec{\ell} = 0$ &
$\displaystyle \vec{\nabla} \times \vec{E} = 0$ \\
{\bf Gauss's law} (magn.) &
$\displaystyle \oint \vec{B} \cdot d\vec{S} = 0$ &
$\displaystyle \vec{\nabla} \cdot \vec{B} = 0$ \\
{\bf Ampere's law} &
$\displaystyle \oint \vec{B} \cdot d\vec{\ell} = \mu_{0} \int \vec{j} \cdot d\vec{S} = \mu_0 I$ &
$\displaystyle \vec{\nabla} \times \vec{B} = \mu_{0} \vec{j}$ \\
\hline
\end{tabular}
\end{table}
}
\end{center}
\begin{center}
{
\begin{table}[H]
\begin{tabular}{|l|c|c|}
\hline
\multicolumn{3}{|l|} {
{\color{magenta}
{\bf Static case within materials}
}
}\\
\hline
{\bf Gauss's law} &
$\displaystyle \oint \vec{D} \cdot d\vec{S} = \int \rho_{f} d\tau = Q_{f}$ &
$\displaystyle \vec{\nabla} \cdot \vec{D} = \rho_{f}$ \\
{\bf Circuital law} &
$\displaystyle \oint \vec{E} \cdot d\vec{\ell} = 0$ &
$\displaystyle \vec{\nabla} \times \vec{E} = 0$ \\
{\bf Gauss's law} (magn.) &
$\displaystyle \oint \vec{B} \cdot d\vec{S} = 0$ &
$\displaystyle \vec{\nabla} \cdot \vec{B} = 0$ \\
{\bf Ampere's law} &
$\displaystyle \oint \vec{H} \cdot d\vec{\ell} = \int \vec{j}_{f} \cdot d\vec{S} = I_{f}$ &
$\displaystyle \vec{\nabla} \times \vec{H} = \vec{j}_{f}$ \\
\hline
\end{tabular}
\end{table}
}
\end{center}
}
\end{frame}
%
%
%
\begin{frame}{Diamagnetic materials}
In {\bf diamagnetic} substances, the magnetization is in a direction
{\bf opposite} to that of an externally applied magnetizing field.
\begin{itemize}
\item Diamagnetism is a {\bf weak and non-permanent effect}.
\item Diamagnetic materials are {\bf repelled} by the applied magnetic field.
\end{itemize}
\vspace{0.3cm}
\begin{columns}
\begin{column}{0.25\textwidth}
\begin{block}{}
Reminder:
\begin{equation*}
\vec{M} = \chi_{m} \vec{H}
\end{equation*}
\begin{equation*}
\vec{B} = \mu \vec{H}
\end{equation*}
\begin{equation*}
\mu = \mu_0 \Big(1 + \chi_{m} \Big)
\end{equation*}
\end{block}
\end{column}
\begin{column}{0.05\textwidth}
\end{column}
\begin{column}{0.70\textwidth}
Since $\vec{M}$ and $\vec{H}$ are anti-parallel: $\chi_{m} < 0$\\
\vspace{0.2cm}
Diamagnetism is a weak effect: $|\chi_{m}| << 1$\\
and, therefore: $\mu / \mu_{0} < 1$\\
\vspace{0.2cm}
Typical values of $\chi_m$ for diamagnetic substances:
\begin{center}
\begin{table}[H]
\begin{tabular}{|l|l|}
\hline
Substance & $\chi_m$ at $T=0^{o}C$ \\
\hline
$H_{2}$ & $-2.3 \cdot 10^{-9}$ \\
$H_{2}O$ & $-1.2 \cdot 10^{-5}$ \\
$N_{2}$ & $-0.7 \cdot 10^{-8}$ \\
$Ag$ & $-2.5 \cdot 10^{-5}$ \\
\hline
\end{tabular}
\end{table}
\end{center}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Paramagnetic materials}
In {\bf paramagnetic} substances, the magnetization is in the same direction
as that of an externally applied magnetizing field.
\begin{itemize}
\item Paramagnetism is a {\bf weak and non-permanent effect}.\\
\item Paramagnetic materials are {\bf attracted} by the applied magnetic field.
\end{itemize}
\vspace{0.3cm}
\begin{columns}
\begin{column}{0.25\textwidth}
\begin{block}{}
Reminder:
\begin{equation*}
\vec{M} = \chi_{m} \vec{H}
\end{equation*}
\begin{equation*}
\vec{B} = \mu \vec{H}
\end{equation*}
\begin{equation*}
\mu = \mu_0 \Big(1 + \chi_{m} \Big)
\end{equation*}
\end{block}
\end{column}
\begin{column}{0.05\textwidth}
\end{column}
\begin{column}{0.70\textwidth}
Since $\vec{M}$ and $\vec{H}$ are parallel: $\chi_{m} > 0$\\
\vspace{0.2cm}
Paramagnetism is a weak effect: $|\chi_{m}| << 1$\\
and, therefore: $\mu / \mu_{0} > 1$\\
\vspace{0.2cm}
Typical values of $\chi_m$ for paramagnetic substances:
\begin{center}
\begin{table}[H]
\begin{tabular}{|l|l|}
\hline
Substance & $\chi_m$ at $T=20^{o}C$ \\
\hline
$O_{2}$ & $1.8 \cdot 10^{-8}$ \\
$Pt$ & $2.7 \cdot 10^{-5}$ \\
$Al$ & $2.1 \cdot 10^{-5}$ \\
\hline
\end{tabular}
\end{table}
\end{center}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Ferromagnetic materials}
For {\bf ferromagnetic} materials, the {\bf magnetisation} produced by an external field is {\bf much much larger}.
\begin{itemize}
{\small
\item Previously quoted values of the magnetic susceptibility
for paramagnetic and diamagnetic materials that were at most in the few $\times$ $10^{-5}$ range.
\item For iron, nickel and Cobalt, the magnetic susceptibility is $\sim 10^{+6}$!
}
\end{itemize}
\vspace{0.2cm}
In ferromagnetic materials the {\bf magnetic susceptibility is not a constant}
\begin{itemize}
\item i.e. ferromagnets are not linear materials.
\end{itemize}
As matter of fact, the {\bf magnetic susceptibility does not have a single value for a given M and H!}
\begin{itemize}
\item i.e. the magnetisation depends on its magnetisation history!
\end{itemize}
\vspace{0.2cm}
Ferromagnetic materials {\bf retain a magnetisation} even when the magnetising field is removed!
\end{frame}
%
%
%
\begin{frame}{Hysteresis loop}
\begin{columns}
\begin{column}{0.30\textwidth}
\begin{center}
\includegraphics[width=0.85\textwidth]{./images/schematics/simple_electromagnet_01.png}\\
\end{center}
\end{column}
\begin{column}{0.70\textwidth}
{\small
Consider the simple electromagnet shown on the left. Current I running in the coil turns
creates a magnetic field and magnetizes an iron core.
Let's consider the magnetization M as function of the current intensity I.
}
\end{column}
\end{columns}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/schematics/hysterisis_curve_01.png}\\
\end{center}
\end{frame}
%
% Physical origins
%
\begin{frame}{Physical origins}
What physics underpins the different magnetic behaviour
of diamagnetic, paramagnetic and ferromagnetic materials?\\
\vspace{0.2cm}
I will attempt to give some {\bf classical arguments} and descriptions aiming to develop a
qualitative understanding.\\
\vspace{0.2cm}
But, keep in mind that, our classical explanations, although simple and intuitive,
are {\bf ultimately wrong}.
\begin{itemize}
\item