-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathslides_lecture08_main.tex
1038 lines (811 loc) · 27.8 KB
/
slides_lecture08_main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\renewcommand{\prevlecture}{7 }
\renewcommand{\thislecture}{8 }
\renewcommand{\nextlecture}{9 }
%
% Cover page
%
\title[PHYS 201 / Lecture \thislecture]
{
PHYS 201 / Lecture \thislecture\\
{\it
Generalizing Maxwell's eqs for time-dependent fields: \\
Faraday's law and Maxwell's correction to Ampere's law
}\\
}
\input{slides_author.tex}
\begin{frame}[plain]
\titlepage
\end{frame}
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
% Revision of previous lecture
%
\renewcommand{\lecturesummarytitle}{Revision }
\input{slides_lecture07_summary.tex}
%
% Plan for this lecture
%
\begin{frame}{Plan for Lecture \thislecture}
In this lecture:
\begin{itemize}
\item We will study how we need to {\bf extend Maxwell's eqs. in vaccum}
in the case of {\bf time-dependent fields}.
\end{itemize}
\end{frame}
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
%
%
\begin{frame}{Time-dependent fields}
Having completed the study of Maxwell's equations for the static case (both in vaccum and in materials),
we will now turn our attention to the case where the electric and magnetic field can vary with time.
\begin{center}
\includegraphics[width=0.95\textwidth]{./images/schematics/maxwell_eq_variations.png}\\
\end{center}
\end{frame}
%
%
%
\begin{frame}{A conductor moving in a magnetic field}
Consider a conductor with length L moves with velocity $\vec{u}$ inside a
homogenous magnetic field $\vec{B}$, as shown below:
\begin{center}
\includegraphics[width=0.60\textwidth]{./images/schematics/conductor_in_magnetic_field_induced_emf.png}\\
\end{center}
\vspace{0.1cm}
Each electron in the conductor feels a magnetic force $\vec{F}_{M} = q \vec{u} \times \vec{B}$.\\
\vspace{0.1cm}
That magnetic force {\bf induces the build-up of charge}
which {\bf produces an electric field} $\vec{E}$:
Each electron feels an electric force $\vec{F}_{E} = q \vec{E}$.\\
\vspace{0.2cm}
The resulting {\bf electric force} $\vec{F}_{E}$ {\bf opposes the magnetic force} $\vec{F}_{M}$.
\end{frame}
%
%
%
\begin{frame}{A conductor moving in a magnetic field}
\begin{columns}
\begin{column}{0.45\textwidth}
\includegraphics[width=0.98\textwidth]{./images/schematics/conductor_in_magnetic_field_induced_emf.png}\\
\end{column}
\begin{column}{0.55\textwidth}
At equilibrium, the electric and magnetic forces are equal in strength:
\begin{equation*}
\vec{F}_{E} = \vec{F}_{M} \Rightarrow
\cancel{q} \vec{E} = \cancel{q} \vec{u} \times \vec{B} \Rightarrow
\end{equation*}
\begin{equation*}
\vec{E} = \vec{u} \times \vec{B}
\end{equation*}
\end{column}
\end{columns}
\vspace{0.4cm}
An electrical potential difference develops between the ends of the moving conductor,
which becomes a source of EMF:
\begin{equation*}
\mathcal{E} = \int_{L} \vec{E} \cdot d\vec{\ell} = \int_{L} \Big( \vec{u} \times \vec{B} \Big) \cdot d\vec{\ell}
\end{equation*}
For a closed circuit:
\begin{equation*}
\mathcal{E} = \oint_{L} \vec{E} \cdot d\vec{\ell} = \oint_{L} \Big( \vec{u} \times \vec{B} \Big) \cdot d\vec{\ell}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{A circuit moving through a magnetic field}
Now let's consider a simple rectangular circuit moving through a region that has a magnetic field $\vec{B}$:
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/schematics/circuit_moving_through_magnetic_field_all_3.png}\\
\end{center}
Conventions:
\begin{itemize}
\item $\vec{B}$ is towards the page.
\item Assuming current I flows anti-clockwise.
\item Looping within the circuit: anti-clockwise
\item Following the direction of the current I with our right-hand, the thumb points towards you -
let's use that direction for the surface vector
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{A circuit moving through a magnetic field}
\begin{columns}
\begin{column}{0.30\textwidth}
\includegraphics[width=0.99\textwidth]{./images/schematics/circuit_moving_through_magnetic_field_left.png}\\
\end{column}
\begin{column}{0.70\textwidth}
Let's consider what happens as the circuit enters in the region of the magnetic field.
\end{column}
\end{columns}
\vspace{0.3cm}
\begin{columns}[t]
\begin{column}{0.50\textwidth}
{\scriptsize
\underline{EMF}:\\
\vspace{0.1cm}
\begin{itemize}
\item Side `12':
$\mathcal{E} = \int \Big( \vec{u} \times \vec{B} \Big) \cdot d\vec{\ell} = uBb$
\item Side `34' ($\vec{B}=0$):
$\mathcal{E} = 0$
\item Side `23' and `14' ($\vec{u} \times \vec{B}$ $\perp$ $d\vec{\ell}$):
$\mathcal{E} = 0$
\item Summing-up the EMFs for all 4 sides:
{\color{magenta}
\begin{equation*}
\mathcal{E} = \oint \vec{E} \cdot d\vec{\ell} = uBb
\end{equation*}
}
\end{itemize}
}
\end{column}
\begin{column}{0.50\textwidth}
{\scriptsize
\underline{Change in flux}:\\
\begin{equation*}
\frac{d\Phi_{M}}{dt} =
\frac{d}{dt} \Big( \int \vec{B} \cdot d\vec{S} \Big) =
\frac{d}{dt} \Big( \vec{B} \cdot \int d\vec{S} \Big) =
\end{equation*}
\begin{equation*}
\frac{d}{dt} \Big( \vec{B} \cdot \vec{S} \Big) \xlongequal{\angle(\vec{B}, \vec{S}) = \pi}
\frac{d}{dt} \Big( -BS \Big) \xlongequal{S=bx}
\end{equation*}
\begin{equation*}
\frac{d}{dt} \Big( -Bbx \Big) =
- \frac{dx}{dt} B b \Rightarrow
\end{equation*}
\begin{equation*}
{\color{magenta}
\frac{d\Phi_{M}}{dt} = -uBb
}
\end{equation*}
}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{A circuit moving through a magnetic field}
\begin{columns}
\begin{column}{0.30\textwidth}
\includegraphics[width=0.99\textwidth]{./images/schematics/circuit_moving_through_magnetic_field_centre.png}\\
\end{column}
\begin{column}{0.70\textwidth}
Let's consider what happens when the circuit is entirely within the region of the magnetic field.
\end{column}
\end{columns}
\vspace{0.1cm}
\begin{columns}[t]
\begin{column}{0.50\textwidth}
{\scriptsize
\underline{EMF}:\\
\vspace{0.2cm}
\begin{itemize}
\item Side `12':
$\mathcal{E} = \int \Big( \vec{u} \times \vec{B} \Big) \cdot d\vec{\ell} = uBb$
\item Side `34':
$\mathcal{E} = \int \Big( \vec{u} \times \vec{B} \Big) \cdot d\vec{\ell} = -uBb$\\
(since $\vec{u} \times \vec{B}$ is same as for side `12',
but $d\vec{\ell}$ has opposite direction).
\item Side `23' and `14' ($\vec{u} \times \vec{B}$ $\perp$ $d\vec{\ell}$):
$\mathcal{E} = 0$
\item Summing-up the EMFs for all 4 sides:
{\color{magenta}
\begin{equation*}
\mathcal{E} = \oint \vec{E} \cdot d\vec{\ell} = 0
\end{equation*}
}
\end{itemize}
}
\end{column}
\begin{column}{0.50\textwidth}
{\scriptsize
\underline{Change in flux}:\\
\vspace{0.1cm}
The circuit is entirely within the magnetic field so, as it moves,
there are as many magnetic field line entering its surface as ones exiting.
The rate of change of the magnetic flux is 0.
{\color{magenta}
\begin{equation*}
\frac{d\Phi_{M}}{dt} = 0
\end{equation*}
}
}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{A circuit moving through a magnetic field}
\begin{columns}
\begin{column}{0.30\textwidth}
\includegraphics[width=0.99\textwidth]{./images/schematics/circuit_moving_through_magnetic_field_right.png}\\
\end{column}
\begin{column}{0.70\textwidth}
Finally, let's consider what happens as the circuit exits the region of the magnetic field.
\end{column}
\end{columns}
\vspace{0.3cm}
\begin{columns}[t]
\begin{column}{0.50\textwidth}
{\scriptsize
\underline{EMF}:\\
\vspace{0.1cm}
\begin{itemize}
\item Side `12' ($\vec{B}=0$):
$\mathcal{E} = 0$
\item Side `34':
$\mathcal{E} = \int \Big( \vec{u} \times \vec{B} \Big) \cdot d\vec{\ell} = -uBb$
\item Side `23' and `14' ($\vec{u} \times \vec{B}$ $\perp$ $d\vec{\ell}$):
$\mathcal{E} = 0$
\item Summing-up the EMFs for all 4 sides:
{\color{magenta}
\begin{equation*}
\mathcal{E} = \oint \vec{E} \cdot d\vec{\ell} = -uBb
\end{equation*}
}
\end{itemize}
}
\end{column}
\begin{column}{0.50\textwidth}
{\scriptsize
\underline{Change in flux}:\\
\begin{equation*}
\frac{d\Phi_{M}}{dt} =
\frac{d}{dt} \Big( \int \vec{B} \cdot d\vec{S} \Big) =
\frac{d}{dt} \Big( \vec{B} \cdot \int d\vec{S} \Big) =
\end{equation*}
\begin{equation*}
\frac{d}{dt} \Big( \vec{B} \cdot \vec{S} \Big) \xlongequal{\angle(\vec{B}, \vec{S}) = \pi}
\frac{d}{dt} \Big( -BS \Big) \xlongequal{S=bx}
\end{equation*}
\begin{equation*}
\frac{d}{dt} \Big( -Bbx \Big) =
- \frac{dx}{dt} B b = -(-u) B b \Rightarrow
\end{equation*}
\begin{equation*}
{\color{magenta}
\frac{d\Phi_{M}}{dt} = uBb
}
\end{equation*}
}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{A circuit moving through a magnetic field}
A rectangular circuit moving through a region with magnetic field $\vec{B}$:
\begin{center}
\includegraphics[width=0.88\textwidth]{./images/schematics/circuit_moving_through_magnetic_field_all_3.png}
\end{center}
\begin{columns}
\begin{column}{0.55\textwidth}
In summary:
{\small
\setlength{\extrarowheight}{10pt}
\setlength{\arraycolsep}{5pt}
\begin{table}[H]
\begin{tabular}{|c||c|c|}
\hline
& $\displaystyle \oint_{L} \vec{E} \cdot d\vec{\ell}$ & $\displaystyle \frac{d\Phi_{M}}{dt}$\\
\hline
left & uBb & -uBb \\
centre & 0 & 0 \\
right & -uBb & uBb \\
\hline
\end{tabular}
\end{table}
}
\end{column}
\begin{column}{0.45\textwidth}
So, indeed, in all cases:
\begin{equation*}
\mathcal{E} = \oint_{L} \vec{E} \cdot d\vec{\ell} = - \frac{d\Phi_{M}}{dt}
\end{equation*}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Faraday's observations}
In 1831 Michael Faraday reported on a series of experiments.\\
\vspace{0.2cm}
A current flows in a wire loop when:
\vspace{0.2cm}
\begin{enumerate}[(a)]
{\small
\item the loop is pulled through a magnetic field,
\item the loop is at rest but the magnet moves in the opposite direction, and
\item both the loop and the magnet are at rest but the strength of the magnetic field is varied
}
\end{enumerate}
\begin{center}
\includegraphics[width=0.88\textwidth]{./images/schematics/faraday_law_schematic.png}
\end{center}
\end{frame}
%
%
%
\begin{frame}{Faraday's observations}
\begin{center}
\includegraphics[width=0.88\textwidth]{./images/schematics/faraday_law_schematic.png}\\
\end{center}
\begin{itemize}
\item In cases (a) and (b) it is the {\bf magnetic field} that is {\bf responsible for the EMF}
(as in the example we studied earlier).
\item But in case (c) both the loop and the magnet are stationary and the force felt
by the electrons can not be magnetic.
It is the {\bf electric field} that is {\bf responsible for the EMF}!
\end{itemize}
This led Faraday to realize that:
\begin{center}
{\bf A time-varying magnetic field induces an electric field}
\end{center}
\end{frame}
%
%
%
\begin{frame}{Faraday's law / Lenz's law}
In all cases the {\bf motional EMF} is directly related
to the {\bf change of the magnetic flux $\Phi_{M}$ though the circuit}:\\
\vspace{0.1cm}
\begin{columns} [T]
\begin{column}{0.25\textwidth}
\includegraphics[width=0.98\textwidth]{./images/people/faraday.png}\\
{\tiny Michael Faraday (1791 - 1867).}
\end{column}
\begin{column}{0.75\textwidth}
\begin{center}
{\color{red}
\begin{equation*}
\mathcal{E} = \oint_{L} \vec{E} \cdot d\vec{\ell} = - \frac{d\Phi_{M}}{dt}
\end{equation*}
}
\vspace{0.2cm}
This is the so-called {\bf Faraday's law} (integral form).
\end{center}
\end{column}
\end{columns}
\vspace{0.1cm}
\begin{columns}
\begin{column}{0.75\textwidth}
{\scriptsize
Lenz' law (1845): The EMF induced by a changing flux has a polarity
such that the current flowing gives rise to a flux which opposes the change of flux.\\
\vspace{0.1cm}
The minus sign is a consequence of the {\bf conservation of energy} and
of {\bf Newton's 3rd law} of motion: Induction is a an ``inertial reaction''.
The system develops a current which tries to maintain the flux constant.\\
}
\end{column}
\begin{column}{0.25\textwidth}
\includegraphics[width=0.83\textwidth]{./images/people/lenz.jpg}\\
{\tiny Heinrich Lenz (1804 - 1865).}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Differential form of Faraday's law}
The integral form of Faraday's law is:
\begin{equation*}
\oint_{L} \vec{E} \cdot d\vec{\ell} = - \frac{d}{dt} \int_{S} \vec{B} \cdot d\vec{S}
\end{equation*}
Using Stoke's theorem, we obtain its differential form:
\begin{equation*}
\oint_{L} \vec{E} \cdot d\vec{\ell} = - \frac{d}{dt} \int_{S(L)} \vec{B} \cdot d\vec{S} \Rightarrow
\int_{S(L)} \Big( \vec{\nabla} \times \vec{E} \Big) \cdot d\vec{S} =
- \int_{S(L)} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S} \Rightarrow
\end{equation*}
\begin{equation*}
\int_{S(L)} \Big( \vec{\nabla} \times \vec{E} + \frac{\partial \vec{B}}{\partial t} \Big) \cdot d\vec{S} = 0 \Rightarrow
\vec{\nabla} \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0 \Rightarrow
\end{equation*}
\begin{equation*}
{\color{red}
\vec{\nabla} \times \vec{E} = - \frac{\partial \vec{B}}{\partial t}
}
\end{equation*}
\end{frame}
%
% Worked example
%
{
\problemslide
%
%
%
\begin{frame}{Worked example }
\begin{blockexmplque}{Question}
A circular wire loop on the x-y plane has a radius $r_0$ = 1 cm at time t = 0. \\
A homogeneous magnetic field of $3 \times 10^{-3}$ T in the positive z direction permeates the loop.
\begin{enumerate}
\item Find the magnetic flux through the loop at t=0.
\item The radius of the loop increases with $\displaystyle r(t) = r_0 + u \cdot t$
with u = 1 cm/s. Find the magnetic flux through the loop at t = 4 s.
\item Derive an expression for the EMF in the loop as a function of time.
\end{enumerate}
\end{blockexmplque}
\vspace{0.1cm}
The flux through the loop is given by $\displaystyle \Phi = \int \vec{B} \cdot d\vec{S}$.
The loop is lying on the x-y plane, hence the surface vector
$d\vec{S}$ that is normal to the loop surface is along the z axis.
$\vec{B}$ is also along the z axis.
Therefore, the above dot product simplifies to $\displaystyle \Phi = \int B dS$.
\end{frame}
%
%
%
\begin{frame}{Worked example }
Since $\vec{B}$ is homogeneous:
\begin{equation*}
\Phi = B \int dS = B \Big( \pi r^2\Big)
\end{equation*}
where $r$ is the radius of the loop.
\vspace{0.4cm}
In our case, r and hence $\Phi$ are functions of time:
\begin{equation*}
\Phi(t) = B \Big( \pi r(t)^2\Big)
\end{equation*}
\vspace{0.3cm}
At time t = 0:
\begin{equation*}
\Phi(t = 0) = B \Big( \pi r_0^2 \Big)
= \Big( 3 \times 10^{-3} \; T \Big) \Big( 3.14 \cdot 0.01^2 \; m^2 \Big) = 9.4 \times 10^{-7} \; T \cdot m^2
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example }
The radius of the loop increases as $\displaystyle r(t) = r_0 + u \cdot t$,
with u = 1 cm/s.
\vspace{0.3cm}
At t = 4 s, the radius of the loop is:
\begin{equation*}
r(t = 4 \; s) = 0.01 \; cm + \Big(0.01 \; m/s \Big) \cdot \Big( 4 \; s \Big) = 0.05 \; m
\end{equation*}
\vspace{0.2cm}
Therefore the flux through the loop is now:
\begin{equation*}
\Phi(4 \; s) = \Big( 3 \times 10^{-3} \; T \Big) \Big( 3.14 \cdot 0.05^2 \; m^2 \Big) = 2.35 \times 10^{-5} \; T \cdot m^2
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example }
According to Faraday's law, the EMF $\displaystyle \mathcal{E} = \oint \vec{E} d\vec{\ell}$ developed in the wire loop
is equal to the negative rate of change of the magnetic flux through the loop:
\begin{equation*}
\mathcal{E} = - \frac{d\Phi(t)}{dt} = - \frac{d}{dt} \bigg\{ B
\Big( \pi r(t)^2\Big) \bigg\} = - \pi B \frac{d}{dt} \bigg\{ r(t)^2 \bigg\}
\end{equation*}
Recall that $\displaystyle r(t) = r_0 + u \cdot t$, therefore:
\begin{equation*}
\mathcal{E}
= - \pi B \frac{d}{dt} \bigg\{ \Big( r_0 + u \cdot t \Big)^2 \bigg\}
= - \pi B \frac{d}{dt} \bigg\{ r_0^2 + 2 \cdot r_0 \cdot u \cdot t + u^2 \cdot t^2 \bigg\}
\end{equation*}
\begin{equation*}
= - \pi B \Big( 2 \cdot r_0 \cdot u + 2\cdot u^2 \cdot t \Big)
= - 2 \pi B u \Big( r_0 + u \cdot t \Big)
= - 2 \pi B u r(t)
\end{equation*}
\end{frame}
} % Example
%
%
%
\begin{frame}{A problem with Ampere's law}
Consider a current I charging a parallel plate capacitor.\\
\vspace{0.3cm}
\begin{columns}
\begin{column}{0.30\textwidth}
\begin{center}
\includegraphics[width=0.95\textwidth]{./images/schematics/problem_with_ampere_law.png}\\
\end{center}
\end{column}
\begin{column}{0.70\textwidth}
{\small
Apply Ampere's law for the flat (light blue) surface at the top:
\begin{equation*}
\oint_{L} \vec{B} \cdot d\vec{\ell} = \mu_{0} I
\end{equation*}
So {\bf there is a magnetic field along L}.\\
\vspace{0.2cm}
Now, apply Ampere's law for the ``tophat'' (light green) surface
made of the cylindrical part (no current flowing through it) and the
circle between the two conducting plates (also no current):
\begin{equation*}
\oint_{L} \vec{B} \cdot d\vec{\ell} = 0
\end{equation*}
So {\bf there is NO magnetic field along L}.\\
}
\end{column}
\end{columns}
\vspace{0.3cm}
We get {\bf contradictory predictions} for the same path L! What is wrong?
\end{frame}
%
%
%
\begin{frame}{A problem with Ampere's Law}
We get {\bf contradictory predictions} for the same path L! What is wrong?\\
\vspace{0.3cm}
When we studied Faraday's law, we saw that a change in the magnetic field $\vec{B}$
is responsible for creating an electric field $\vec{E}$:
\begin{equation*}
\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}
\end{equation*}
We should expect that the opposite may be true as well!
A change in the electric field $\vec{E}$ may modify the magnetic field $\vec{B}$.\\
\vspace{0.3cm}
In the example studied previously, the electric field $\vec{E}$ change with time.
\vspace{0.2cm}
How should we extend Ampere's law to take the effects of a changing electric field into account?
\end{frame}
%
%
%
\begin{frame}{Extending Ampere's law}
Let's start from the differential form of Ampere's law:
\begin{equation*}
\vec{\nabla} \times \vec{B} = \mu_0 \vec{j}
\end{equation*}
We can calculate the divergence of both sides:
\begin{equation*}
\vec{\nabla} \cdot \Big( \vec{\nabla} \times \vec{B} \Big) = \mu_0 \vec{\nabla} \cdot \vec{j}
\end{equation*}
The left-hand side is 0 (the divergence of the curl of a vector field is always 0).
So the right-hand side has to be 0 as well.
\begin{equation*}
\vec{\nabla} \vec{j} = 0
\end{equation*}
But this is generally not true!
Recall the continuity equation that expresses the local conservation of charge:
\begin{equation*}
\vec{\nabla} \cdot \vec{j} = -\frac{\partial \rho}{\partial t}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Extending Ampere's law}
Ampere's law, as we know it so far, is at odds with the fundamental principle of
the local conservation of charge. Can we reconcile the two?
The charge density is given by Gauss' law
\begin{equation*}
\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0} \Rightarrow \rho =
\epsilon_0 \vec{\nabla} \cdot \vec{E}
\end{equation*}
Taking the partial derivative of $\rho$ with respect to time:
\begin{equation*}
\frac{\partial \rho}{\partial t} =
\frac{\partial}{\partial t} \Big( \epsilon_0 \vec{\nabla} \cdot \vec{E} \Big) =
\vec{\nabla} \cdot \Big( \epsilon_0 \frac{\partial \vec{E}}{\partial t} \Big)
\end{equation*}
Then, the continuity equation:
\begin{equation*}
\vec{\nabla} \cdot \vec{j} = -\frac{\partial \rho}{\partial t}
\end{equation*}
becomes:
\begin{equation*}
\vec{\nabla} \cdot \vec{j} =
- \vec{\nabla} \cdot \Big( \epsilon_0 \frac{\partial \vec{E}}{\partial t} \Big)
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Extending Ampere's law}
We have written the continuity equation as:
\begin{equation*}
\vec{\nabla} \cdot \vec{j} = - \vec{\nabla} \cdot \Big( \epsilon_0 \frac{\partial \vec{E}}{\partial t} \Big)
\end{equation*}
which suggests that:
\begin{equation*}
\vec{\nabla} \cdot \Big( \vec{j} + \epsilon_0 \frac{\partial \vec{E}}{\partial t} \Big) = 0
\end{equation*}
{\bf This is interesting hint!}\\
Maxwell realised that all it takes to fix Ampere's law is to do the following substitution:
\begin{equation*}
\vec{j} \rightarrow
\vec{j} + \epsilon_0 \frac{\partial \vec{E}}{\partial t}
\end{equation*}
The term $\displaystyle \epsilon_0 \frac{\partial \vec{E}}{\partial t}$ is the density
of the so-called called {\bf displacement current}.
\end{frame}
%
%
%
\begin{frame}{Extending Ampere's law}
With this extension (adding the displacement current), Ampere's law is no longer at odds with the
local conservation of charge, as expressed with the continuity equation. Indeed:
\begin{equation*}
\vec{\nabla} \times \vec{B} =
\mu_0 \Big( \vec{j} + \epsilon_0 \frac{\partial \vec{E}}{\partial t} \Big) \Rightarrow
\end{equation*}
\begin{equation*}
\vec{\nabla} \cdot \Big( \vec{\nabla} \times \vec{B} \Big) =
\vec{\nabla} \cdot \Big( \mu_0 \vec{j} + \epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t} \Big) \Rightarrow
\end{equation*}
\begin{equation*}
0 =
\cancel{\mu_0} \vec{\nabla} \cdot \vec{j} + \epsilon_0 \cancel{\mu_0} \frac{\partial}{\partial t}
\Big( \vec{\nabla} \cdot \vec{E}\Big) \Rightarrow
\end{equation*}
\begin{equation*}
0 =
\vec{\nabla} \cdot \vec{j} + \cancel{\epsilon_0} \frac{\partial}{\partial t}
\Big( \frac{\rho}{\cancel{\epsilon_0}} \Big) \Rightarrow
\end{equation*}
\begin{equation*}
\frac{\partial \rho}{\partial t} = - \vec{\nabla} \cdot \vec{j}
\end{equation*}
\end{frame}
%
% Worked example
%
{
\problemslide
%
%
%
\begin{frame}{Worked example }
\begin{blockexmplque}{Question}
\begin{columns}
\begin{column}{0.22\textwidth}
\begin{center}
\includegraphics[width=0.90\textwidth]{./images/problems/lect6_capacitor.png}
\end{center}
\end{column}
\begin{column}{0.78\textwidth}
A parallel-plate capacitor with circular plates of radius R is being
charged as shown in the figure on the left.\\
Derive an expression for the magnetic field at radius r (in
the volume within the two plates) for the case r $\leq$ R.
\end{column}
\end{columns}
\end{blockexmplque}
\vspace{0.2cm}
A magnetic field can be created either by a current or a changing electric field.
This is expressed by Ampere's law:
\begin{equation*}
\oint_{L} \vec{B} \cdot d\vec{\ell} = \mu_0 \int_{S} \Big( \vec{j} + \epsilon_0 \frac{\partial \vec{E}}{\partial t} \Big) \cdot d\vec{S}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example }
There is no current between the capacitor plates, but the electric flux there is changing.
Thus, Ampere's law reduces to:
\begin{equation*}
\oint_{L} \vec{B} \cdot d\vec{\ell} = \mu_0 \epsilon_0 \int_{S} \Big( \frac{\partial \vec{E}}{\partial t} \Big) \cdot d\vec{S}
\end{equation*}
\vspace{0.2cm}
We choose a circular Amperian loop with radius r $\le$ R.
\vspace{0.2cm}
The magnetic field $\vec{B}$ at all points along the loop is tangent to the loop, as is the path element $d\vec{\ell}$.
Thus $\vec{B}$ and $d\vec{\ell}$ are parallel or antiparallel at each point of the loop.
\vspace{0.2cm}
For simplicity, assume that we step along the loop in such a way so that $\vec{B}$ and $d\vec{\ell}$ are parallel.
Therefore:
\begin{equation*}
\oint_{L} \vec{B} \cdot d\vec{\ell} = \oint_{L} B \; d\ell
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example }
Due to the circular symmetry of the plates, we can also assume that $\vec{B}$ has the same
magnitude at every point around the loop. Thus, B can be taken outside the integral.
\vspace{0.2cm}
The integral that remains is $\oint_{L} d\ell$ which simply gives the circumference $2 \pi r$ of the loop.
Therefore, the integral becomes:
\begin{equation*}
\oint_{L} \vec{B} \cdot d\vec{\ell} = B \; \Big( 2 \pi r\Big)
\end{equation*}
\vspace{0.2cm}
Substituting the above result into Ampere's law gives:
\begin{equation*}
B \; \Big( 2 \pi r\Big) = \mu_0 \epsilon_0 \int_{S} \Big( \frac{\partial \vec{E}}{\partial t} \Big) \cdot d\vec{S} \Rightarrow
B = \frac{\mu_0 \epsilon_0}{2 \pi r} \int_{S} \Big( \frac{\partial \vec{E}}{\partial t} \Big) \cdot d\vec{S} \Rightarrow
\end{equation*}
\begin{equation*}
B = \frac{\mu_0 \epsilon_0}{2 \pi r} \frac{\partial}{\partial t} \int_{S} \vec{E} \cdot d\vec{S}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example }
We assume that the electric field $\vec{E}$ is uniform between the
capacitor plates and directed perpendicular to the plates.
The electric flux through the Amperian loop is simply $EA$,
where $A$ is the (constant) area encircled by the loop within the electric field.
The previous equation becomes:
\begin{equation*}
B = \frac{\mu_0 \epsilon_0}{2 \pi r} \frac{d}{dt} \Big( E A \Big)
= \frac{\mu_0 \epsilon_0}{2 \pi r} A \frac{dE}{dt}
\end{equation*}
\vspace{0.2cm}
The area A that is encircled by the Amperial loop within the electric field is
the full area $\pi r^2$ of the loop because the loop's radius r is less than (or equal to)
the plate radius R. Substituting $\pi r^2$ for $A$, we have:
\begin{equation*}
B = \frac{\mu_0 \epsilon_0}{2 \pi r} \pi r^2 \frac{dE}{dt} \Rightarrow
B = \frac{\mu_0 \epsilon_0 r}{2} \frac{dE}{dt}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example }
Ignoring edge effects,
the electric field E is uniform within the plates of the parallel plate capacitor
and vanishes outside the volume within the two plates.
Using a cylindrical Gaussian surface whose bases are parallel to the
plates and which encloses the upper plate, we have:
\begin{equation*}
E \pi R^2 = \frac{Q}{\epsilon_0} \Rightarrow
E = \frac{1}{\pi R^2 \epsilon_0} Q
\end{equation*}
Therefore, the rate of change of E is given by:
\begin{equation*}
\frac{dE}{dt} = \frac{1}{\pi R^2 \epsilon_0} \frac{dQ}{dt}
\xRightarrow {I = dQ/dt}
\frac{dE}{dt} = \frac{1}{\pi R^2 \epsilon_0} I
\end{equation*}
Substituting the expression for $dE/dt$ in the expression we obtained
earlier for B, we have:
\begin{equation*}
B = \frac{\mu_0 \epsilon_0 r}{2} \frac{1}{\pi R^2 \epsilon_0} I
\Rightarrow
B = \frac{\mu_0 I r}{2 \pi R^2}
\end{equation*}
This is the required expression for the magnetic field at radius r $\le$ R.
\end{frame}
} % end worked example
% ------------------------------------------------------------------------------