-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathslides_lecture09_main.tex
1975 lines (1512 loc) · 51.1 KB
/
slides_lecture09_main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\renewcommand{\prevlecture}{8 }
\renewcommand{\thislecture}{9 }
\renewcommand{\nextlecture}{10 }
%
% Cover page
%
\title[PHYS 201 / Lecture \thislecture]
{
PHYS 201 / Lecture \thislecture\\
{\it Electromagnetic Waves}\\
}
\input{slides_author.tex}
\begin{frame}[plain]
\titlepage
\end{frame}
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
% Revision of previous lecture
%
\renewcommand{\lecturesummarytitle}{Revision }
\input{slides_lecture08_summary.tex}
%
% Plan for this lecture
%
\begin{frame}{Plan for Lecture \thislecture}
\begin{itemize}
\item Maxwell's equations in vacuum in absence of sources
\item Reminder on waves
\item The electric and magnetic fields satisfy the wave equation
\item Electromagnetic waves and light
\item Energy carried by electromagnetic waves
\item The Poynting theorem
\end{itemize}
\end{frame}
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
%
%
\begin{frame}{Maxwell's equations in vacuum in absence of sources}
\begin{columns}
\begin{column}{0.40\textwidth}
{\small
Let me start from the known Maxwell's equations in vacuum,
and consider the case where there are:
\begin{itemize}
{\small
\item {\bf no charges} ($\rho = 0$)
\item and {\bf no currents} ($\vec{j} = \vec{0}$).
}
\end{itemize}
}
\end{column}
\begin{column}{0.60\textwidth}
\begin{equation*}
\vec{\nabla} \cdot \vec{E} = \cancelto{0}{\frac{\rho}{\epsilon_0}} \Rightarrow
{\color{magenta} \vec{\nabla} \cdot \vec{E} = 0 }
\end{equation*}
\begin{equation*}
{\color{magenta} \vec{\nabla} \times \vec{E} = - \frac{\partial \vec{B}}{\partial t} }
\end{equation*}
\begin{equation*}
{\color{magenta} \vec{\nabla} \cdot \vec{B} = 0 }
\end{equation*}
\begin{equation*}
\vec{\nabla} \times \vec{B} = \cancelto{0}{\mu_0 j} + \epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t} \Rightarrow
{\color{magenta} \vec{\nabla} \times \vec{B} = \epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t} }
\end{equation*}
\end{column}
\end{columns}
\vspace{0.5cm}
{\bf A change in one field feeds the other} (even in absence of sources):\\
Faraday's law tells us that a changing magnetic field generates an electric field, and
Maxwell's correction to Ampere's law tells us that a changing electric field generates a magnetic field.\\
\vspace{0.2cm}
{\bf Can this interplay generate waves?}
\end{frame}
% starting reminder
{
\reminderslide
%
%
%
\begin{frame}{Reminder: Waves}
\begin{center}
A wave is a {\bf disturbance that travels through space.}
\end{center}
\begin{columns}
\begin{column}{0.70\textwidth}
\includegraphics[width=0.98\textwidth]{./images/photos/mech_wave_water_1.jpg}\\
\end{column}
\begin{column}{0.30\textwidth}
\begin{center}
As this disturbance travels it transfers energy.\\
\vspace{0.4cm}
If there is no absorption or dispersion, that disturbance
propagates with a constant velocity and a fixed `shape'.
\end{center}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Reminder: Types of waves}
There are {\bf three main types of waves}:
\begin{itemize}
\item {\bf Mechanical waves}\\
\begin{itemize}
\item These are the waves you are most familiar with
\begin{itemize}
\item For example, sound waves, sea waves, seismic waves.
\end{itemize}
\item Mechanical waves {\bf need a medium} to propagate into. They propagate by deforming that medium.
\begin{itemize}
\item When I speak, I disturb the air molecules in front of my mouth.
\item They collide with neighbouring molecules and bounce back.
\item This disturbance propagates, and it reaches and vibrates your eardrums.
\end{itemize}
% \item For mechanical waves, no medium = no propagation.
\end{itemize}
\item {\bf Electromagnetic waves} {\color{red} $\leftarrow$ The subject of this lecture}\\
\begin{itemize}
\item Less familiar, probably, although you interact with them constantly.
\item They {\bf do not require a medium to propagate.}
\end{itemize}
\item {\bf Matter waves} {\color{red} $\leftarrow$ Will study in future modules}\\
\begin{itemize}
\item You are probably very unfamiliar with these, but they take centre stage
in quantum mechanics ({\em wave-particle duality}).
\item Waves associated with fundamental particles (such as the electron),
composite particles (such as the proton), atoms or even molecules.
\end{itemize}
\end{itemize}
\end{frame}
%
%
%
%
\begin{frame}{Reminder: The wave equation}
A {\bf wave equation} describes how the disturbance propagates in time.\\
\vspace{0.3cm}
Let $\phi(\vec{r}, t)$ be a function that describes that disturbance as a function of position in space and time.
Then it satisfies the following equation:
\begin{equation*}
\vec{\nabla}^{2} \phi(\vec{r}, t) = \frac{1}{u^2} \frac{\partial^{2} \phi(\vec{r}, t)} {\partial t^{2}}
\end{equation*}
where {\bf u is the wave velocity}.\\
%\vspace{0.3cm}
%This equation can be derived in many different physical situations and I am sure that you have seen it already in other modules.\\
\vspace{0.3cm}
A mathematician would say that the wave equation is a
{\bf 2$^{nd}$ order linear partial differential equation (p.d.e)}.
\begin{itemize}
\item This particular type of p.d.e. is called {\em hyperbolic}.
\end{itemize}
\end{frame}
%
%
%
%
\begin{frame}{Reminder: Waves}
Look carefully at the wave equation:
\begin{equation*}
\vec{\nabla}^{2} \phi(\vec{r}, t) = \frac{1}{u^2} \frac{\partial^{2} \phi(\vec{r}, t)} {\partial t^{2}}
\end{equation*}
Here, we encounter $\vec{\nabla}^{2}$ again.
This is the so-called {\em Laplace operator} that we have already seen at a previous lecture (Poisson equation).\\
\vspace{0.2cm}
The Laplacian $\vec{\nabla}^{2} \phi$ is defined as
{\bf the divergence of the gradient} of the scalar function $\phi$:
\begin{equation*}
\vec{\nabla}^{2} \phi(\vec{r}, t) =
\vec{\nabla} \cdot \Big( \vec{\nabla} \phi(\vec{r}, t) \Big) =
\frac{\partial^{2} \phi(\vec{r}, t)} {\partial x^{2}} +
\frac{\partial^{2} \phi(\vec{r}, t)} {\partial y^{2}} +
\frac{\partial^{2} \phi(\vec{r}, t)} {\partial z^{2}}
\end{equation*}
Recall that it represents a quantity which is important in several physical processes:
The Laplacian $\vec{\nabla}^{2} \phi(\vec{r})$ of a scalar function $\phi$ at a point $\vec{r}$
tells you how much $\phi(\vec{r})$ differs from its average over a small volume around $\vec{r}$.
\end{frame}
%
%
%
%
\begin{frame}{Reminder: Solutions of the wave equation}
In one dimension, say x, the wave equation becomes:
\begin{equation*}
\frac{\partial^{2} \phi(x, t)} {\partial x^{2}} =
\frac{1}{u^2} \frac{\partial^{2} \phi(x, t)} {\partial t^{2}}
\end{equation*}
where u is the wave velocity.\\
\vspace{0.2cm}
{\bf What are the solutions of the wave equation?}
\vspace{0.2cm}
\underline{\bf Any} (any whatsoever) function $\phi$ of x and t,
{\bf where x and t appear only in the combination of x-ut},
is a solution.
\begin{equation*}
\phi(x,t) = \psi(z) = \psi(x-ut)
\end{equation*}
\vspace{0.1cm}
For example, the following function is a solution of the wave equation:
\begin{equation*}
\phi = sin^3\Big( x-ut \Big) - \frac{e^{(x-ut)}}{cos^{\frac{7}{2}}\Big( x-ut\Big)} + \Big( x-ut\Big)^{1.298}
\end{equation*}
\vspace{0.1cm}
We can easily see that using the chain rule.
\end{frame}
%
%
%
%
\begin{frame}{Reminder: Solutions of the wave equation}
Any function of x and t, where x and t appear only in the combination of x-ut,
is a solution of the wave equation.\\
\vspace{0.1cm}
Let $\psi(z)$ be a function of x-ut (z = x-ut).
The partial derivative of $\psi(z)$ with respect to time is:
\begin{equation*}
\frac{\partial \psi(z)}{\partial t} =
\frac{\partial z}{\partial t} \cdot \frac{\partial \psi(z)}{\partial z} =
\bigg\{ \frac{\partial}{\partial t} \Big( x - ut \Big) \bigg\} \cdot \frac{\partial \psi(z)}{\partial z} =
-u \frac{\partial \psi(z)}{\partial z}
\end{equation*}
Differentiating once again, we have:
\begin{equation*}
\frac{\partial^{2} \psi(z)}{\partial t^{2}} =
\frac{\partial}{\partial t} \Big( \frac{\partial \psi(z)}{\partial t} \Big) =
\frac{\partial}{\partial t} \Big( -u \frac{\partial \psi(z)}{\partial z} \Big) =
\frac{\partial z}{\partial t} \frac{\partial}{\partial z} \Big( -u \frac{\partial \psi(z)}{\partial z} \Big) =
\end{equation*}
\begin{equation*}
= \bigg\{ \frac{\partial}{\partial t} \Big( x - ut \Big) \bigg\} \frac{\partial}{\partial z} \Big( -u \frac{\partial \psi(z)}{\partial z} \Big) =
-u \frac{\partial}{\partial z} \Big( -u \frac{\partial \psi(z)}{\partial z} \Big) =
u^2 \frac{\partial^{2} \psi(z)}{\partial z^{2}} \Rightarrow
\end{equation*}
{\color{magenta}
\begin{equation*}
\frac{1}{u^2} \frac{\partial^{2} \psi(z)}{\partial t^{2}} = \frac{\partial^{2} \psi(z)}{\partial z^{2}} (*)
\end{equation*}
}
\end{frame}
%
%
%
%
\begin{frame}{Reminder: Solutions of the wave equation}
Similarly, the partial derivative of $\psi(z)$ with respect to x is:
\begin{equation*}
\frac{\partial \psi(z)}{\partial x} =
\frac{\partial z}{\partial x} \cdot \frac{\partial \psi(z)}{\partial z} =
\bigg\{ \frac{\partial}{\partial x} \Big( x - ut \Big) \bigg\} \cdot \frac{\partial \psi(z)}{\partial z} =
\frac{\partial \psi(z)}{\partial z}
\end{equation*}
Differentiating once again, we have:
\begin{equation*}
\frac{\partial^{2} \psi(z)}{\partial x^{2}} =
\frac{\partial}{\partial x} \Big( \frac{\partial \psi(z)}{\partial x} \Big) =
\frac{\partial}{\partial x} \Big( \frac{\partial \psi(z)}{\partial z} \Big) =
\frac{\partial z}{\partial x} \frac{\partial}{\partial z} \Big( \frac{\partial \psi(z)}{\partial z} \Big) =
\end{equation*}
\begin{equation*}
= \bigg\{ \frac{\partial}{\partial x} \Big( x - ut \Big) \bigg\} \frac{\partial}{\partial z} \Big( \frac{\partial \psi(z)}{\partial z} \Big) =
\frac{\partial^{2} \psi(z)}{\partial z^{2}} \Rightarrow
{\color{magenta} \frac{\partial^{2} \psi(z)}{\partial x^{2}} = \frac{\partial^{2} \psi(z)}{\partial z^{2}} } (**)
\end{equation*}
The right-hand sides of Eqs. (*) and (**) are equal, and so are the left-hand sides:
\begin{equation*}
{\color{blue} \frac{\partial^{2} \psi(z)}{\partial x^{2}} = \frac{1}{u^2} \frac{\partial^{2} \psi(z)}{\partial t^{2}} }
\end{equation*}
Therefore, $\psi(z) = \psi(x-ut)$ is a solution of the wave equation.
\end{frame}
%
%
%
%
\begin{frame}{Reminder: Solutions of the wave equation}
So, any function $\phi$ of x and t,
{\bf where x and t appear only in the combination of x-ut},
is a solution.
\begin{equation*}
\phi(x,t) = \psi(x-ut)
\end{equation*}
\vspace{0.1cm}
Can you think of {\bf another family of solutions?}\\
\vspace{0.1cm}
Any function $\phi$ of x and t,
{\bf where x and t appear only in the combination of x+ut},
is also a solution.
\begin{equation*}
\phi(x,t) = \chi(x+ut)
\end{equation*}
\vspace{0.1cm}
The wave equation is {\bf linear}: A superimposition of solutions is a solution.\\
\vspace{0.1cm}
Therefore, most general solution to the wave equation can be written as:\\
\begin{equation*}
\phi(x,t) = \psi(x-ut) + \chi(x+ut)
\end{equation*}
\end{frame}
%
%
%
%
\begin{frame}{Reminder: Direction of wave propagation}
% See the following two snapshots of a wave taken by a small time interval ${\Delta}t$ apart.
% Imagine that at t=0, the disturbance $\phi(x,0)$ is - Draw?
% At a later fixed time t, the disturbance is $\phi(x,t)$
% But the disturbance is still the same, just displaced in x (because the wave has moved)
What does this particular combination of variables (x-ut, x+ut) tell us about
the direction of wave propagation?
\begin{itemize}
\item $\psi(x-ut)$ describes a wave moving in the positive direction of x.
\item $\chi(x+ut)$ describes a wave moving in the negative direction of x.
\end{itemize}
\begin{columns}
\begin{column}{0.60\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/schematics/wave_direction.png}\\
\end{center}
\end{column}
\begin{column}{0.40\textwidth}
{\scriptsize
Convince yourselves that the guy on the left should ride a
$\psi(x-ut)$ wave, not a $\chi(x+ut)$ one.
}
\end{column}
\end{columns}
\end{frame}
}% ending reminder
%
%
%
%
\begin{frame}{The electric field satisfies a wave equation}
Now that we have refreshed our memory on waves, let me return to my
original question. Maxwell's equation in vacuum, in the absence of
charges ($\rho = 0$) and currents ($\vec{j} = \vec{0}$) are shown below:
\begin{equation*}
\vec{\nabla} \cdot \vec{E} = 0
\end{equation*}
\begin{equation*}
\vec{\nabla} \times \vec{E} = - \frac{\partial \vec{B}}{\partial t}
\end{equation*}
\begin{equation*}
\vec{\nabla} \cdot \vec{B} = 0
\end{equation*}
\begin{equation*}
\vec{\nabla} \times \vec{B} = \epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}
\end{equation*}
\vspace{0.4cm}
{\bf A change in one field feeds the other} (even in absence of sources).\\
\vspace{0.2cm}
{\bf Can this interplay generate waves?}
\end{frame}
%
%
%
%
\begin{frame}{The electric field satisfies a wave equation}
We will start from Faraday's law in vacuum:
\begin{equation*}
\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}
\end{equation*}
We will take the curl of both sides and use identity shown below.
Then, we will use Gauss's and Ampere's law in vacuum and in absence of sources:
\begin{equation*}
\vec{\nabla} \cdot \vec{E} =
\cancelto{0}{\frac{\rho}{\epsilon_0}} = 0
\;\;\; and \;\;\;
\vec{\nabla} \times \vec{B} =
\cancelto{0}{\mu_0 \vec{j}} + \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} =
\mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t}
\end{equation*}
to substitute the resulting $\vec{\nabla} \cdot \vec{E}$ and $\vec{\nabla} \times \vec{B}$.
\begin{blockminirem}{\small Mini reminder from calculus}
{\small
For any vector field $\vec{F}$:
$\displaystyle \vec{\nabla} \times \Big( \vec{\nabla} \times \vec{F} \Big) =
\vec{\nabla} \Big( \vec{\nabla} \cdot \vec{F} \Big) - \vec{\nabla}^{2} \vec{F}$\\
\vspace{0.1cm}
The {\bf curl of the curl} of a vector field is
the {\bf gradient of the divergence} of the field minus
the {\bf divergence of the gradient} (Laplacian) of the field.\\
}
\end{blockminirem}
\end{frame}
%
%
%
%
\begin{frame}{The electric field satisfies a wave equation}
\begin{equation*}
\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \Rightarrow
{\color{red} \vec{\nabla} \times} \Big( \vec{\nabla} \times \vec{E} \Big) =
{\color{red} \vec{\nabla} \times} \Big( -\frac{\partial \vec{B}}{\partial t} \Big) \Rightarrow
\end{equation*}
\begin{equation*}
\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) =
- \vec{\nabla} \times \frac{\partial \vec{B}}{\partial t}
\xRightarrow{ \vec{\nabla} \times \Big( \vec{\nabla} \times \vec{F} \Big) =
\vec{\nabla} \Big( \vec{\nabla} \cdot \vec{F} \Big) - \vec{\nabla}^{2} \vec{F} }
\end{equation*}
\begin{equation*}
\vec{\nabla} \Big( \vec{\nabla} \cdot \vec{E} \Big) - \vec{\nabla}^{2} \vec{E} =
- \frac{\partial}{\partial t} (\vec{\nabla} \times \vec{B})
\xRightarrow{
\vec{\nabla} \cdot \vec{E} = \cancelto{0}{\frac{\rho}{\epsilon_0}} = 0
\;\; and \;\;
\vec{\nabla} \times \vec{B} =
\cancelto{0}{\mu_0 \vec{j}} +\mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} =
\mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t}
}
\end{equation*}
\begin{equation*}
- \vec{\nabla}^{2} \vec{E} =
- \frac{\partial}{\partial t} \Big( \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} \Big)
\Rightarrow
{\color{magenta}
\vec{\nabla}^{2} \vec{E} =
\mu_0 \epsilon_0 \frac{\partial^{2} \vec{E}}{\partial t^{2}}
}
\end{equation*}
\end{frame}
%
%
%
%
\begin{frame}{The magnetic field satisfies a wave equation}
The calculation for $\vec{B}$ proceeds along similar lines.\\
\vspace{0.2cm}
We will start from Ampere's law in vacuum and in absence of sources:
\begin{equation*}
\vec{\nabla} \times \vec{B} =
\cancelto{0}{\mu_0 \vec{j}} + \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} =
\mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t}
\end{equation*}
We will take the curl of both sides and use identity used before.
Then, we will use the fact that there are no magnetic monopoles and Faraday's law:
Gauss's and Ampere's law in vacuum and in absence of sources:
\begin{equation*}
\vec{\nabla} \cdot \vec{B} = 0
\;\;\; and \;\;\;
\vec{\nabla} \times \vec{E} = - \frac{\partial \vec{B}}{\partial t}
\end{equation*}
to substitute the resulting $\vec{\nabla} \cdot \vec{B}$ and $\vec{\nabla} \times \vec{E}$.
\end{frame}
%
%
%
%
\begin{frame}{The magnetic field satisfies a wave equation}
\begin{equation*}
\vec{\nabla} \times \vec{B} =
\mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t}
\Rightarrow
{\color{red} \vec{\nabla} \times} \Big( \vec{\nabla} \times \vec{B} \Big) =
{\color{red} \vec{\nabla} \times} \Big( \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} \Big)
\Rightarrow
\end{equation*}
\begin{equation*}
\vec{\nabla} \times \Big( \vec{\nabla} \times \vec{B} \Big) =
\mu_0 \epsilon_0 \vec{\nabla} \times \frac{\partial \vec{E}}{\partial t}
\xRightarrow{ \vec{\nabla} \times \Big( \vec{\nabla} \times \vec{F} \Big) =
\vec{\nabla} \Big( \vec{\nabla} \cdot \vec{F} \Big) - \vec{\nabla}^{2} \vec{F} }
\end{equation*}
\begin{equation*}
\vec{\nabla} \Big( \vec{\nabla} \cdot \vec{B} \Big) - \vec{\nabla}^{2} \vec{B} =
\mu_0 \epsilon_0 \frac{\partial}{\partial t} \Big( \vec{\nabla} \times \vec{E} \Big)
\xRightarrow{ \vec{\nabla} \cdot \vec{B} = 0 \;\; and \;\;
\vec{\nabla} \times \vec{E} = - \frac{\partial \vec{B}}{\partial t} }
\end{equation*}
\begin{equation*}
- \vec{\nabla}^{2} \vec{B} =
\mu_0 \epsilon_0 \frac{\partial}{\partial t} \Big( - \frac{\partial \vec{B}}{\partial t} \Big)
\Rightarrow
{\color{magenta}
\vec{\nabla}^{2} \vec{B} = \mu_0 \epsilon_0 \frac{\partial^{2} \vec{B}}{\partial t^{2}}
}
\end{equation*}
\end{frame}
%
%
%
%
\begin{frame}{A most peculiar wave!}
\begin{itemize}
\item The electric and magnetic fields satisfy a wave equation.
\vspace{0.2cm}
\item Electric and magnetic field ``disturbances'' can propagate in space
in absence of charges or currents.
\vspace{0.2cm}
\item That disturbance {\bf can not die off}!
\begin{itemize}
{\small
\item A time-varying electric field generates a time-varying magnetic field.
\item A time-varying magnetic field generates a time-varying electric field.
}
\end{itemize}
{\bf The change of one field feeds the other!}
\vspace{0.2cm}
\item An electric wave can't exist without a magnetic one (and vice versa)\\
They are part of the same phenomenon: {\bf electromagnetic waves}.
\vspace{0.2cm}
\item Unlike mechanical waves, electromagnetic waves {\bf don't need a medium to propagate into}!
\end{itemize}
\end{frame}
%
%
%
%
\begin{frame}{The speed of electromagnetic waves in vacuum}
$\vec{E}$ and $\vec{B}$ satisfy the following wave equations:
\begin{equation*}
\vec{\nabla}^{2} \vec{E} = \mu_0 \epsilon_0 \frac{\partial^{2} \vec{E}}{\partial t^{2}}
\end{equation*}
\begin{equation*}
\vec{\nabla}^{2} \vec{B} = \mu_0 \epsilon_0 \frac{\partial^{2} \vec{B}}{\partial t^{2}}
\end{equation*}
Recall that earlier we wrote the wave equation as:
\begin{equation*}
\vec{\nabla}^{2} \phi(\vec{r}, t) = \frac{1}{u^2} \frac{\partial^{2} \phi(\vec{r}, t)} {\partial t^{2}}
\end{equation*}
where u is the wave velocity.\\
\vspace{0.2cm}
Therefore the electric and magnetic waves propagate in vacuum with the
same speed which, from above, can be identified with:
\begin{equation*}
u = \frac{1}{\sqrt{\mu_0 \epsilon_0}}
\end{equation*}
\end{frame}
%
%
%
%
\begin{frame}{The speed of electromagnetic waves in vacuum}
Can you confirm that $\frac{1}{\sqrt{\mu_0 \epsilon_0}}$ has velocity units?\\
\vspace{0.4cm}
In SI:
\begin{itemize}
\item the permeability $\mu_0$ is given in $\frac{N}{A^{2}}$, while
\item the permitivity $\epsilon_0$ is given in $\frac{C^{2}}{N \cdot m^{2}}$.
\end{itemize}
\vspace{0.2cm}
The product $\mu_0 \epsilon_0$ has units of:
\begin{equation*}
\frac{\cancel{N}}{A^{2}} \cdot \frac{C^{2}}{\cancel{N} \cdot m^{2}} =
\frac{1}{A^{2}} \cdot \frac{C^{2}}{m^{2}} =
\frac{1}{\Big(\frac{C}{s}\Big)^{2}} \cdot \frac{C^{2}}{m^{2}} =
\frac{s^{2}}{\cancel{C^{2}}} \cdot \frac{\cancel{C^{2}}}{m^{2}} =
\frac{s^{2}}{m^{2}}
\end{equation*}
\vspace{0.2cm}
Indeed, $\frac{1}{\sqrt{\mu_0 \epsilon_0}}$ has SI units of $\frac{m}{s}$.
\end{frame}
%
%
%
%
\begin{frame}{The speed of electromagnetic waves in vacuum}
What is the numerical value of $\displaystyle \frac{1}{\sqrt{\mu_0 \epsilon_0}}$?
\begin{equation*}
u =
\frac{1}{\sqrt{\mu_0 \epsilon_0}} =
\frac{1}{\sqrt{ \Big( 8.854 \cdot 10^{-12} \; \frac{N}{A} \Big) \cdot
\Big( 4\pi \cdot 10^{-7} \; \frac{C}{N\cdot m} \Big)
}
} =
{\bf 299,792,458 \; m/s}
\end{equation*}
\vspace{0.2cm}
\begin{columns}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.65\textwidth]{./images/misc/space_sign_speed_limit.png}\\
\end{center}
\end{column}
\begin{column}{0.50\textwidth}
\begin{center}
Do you recognize this number?
\end{center}
\end{column}
\end{columns}
\end{frame}
%
%
%
%
\begin{frame}{Measurements of the speed of light before Maxwell's time}
At the time that Maxwell was developing his theory, the speed of light was already known.
In fact, it was known from the late 17th century.\\
\vspace{0.2cm}
\begin{columns}
\begin{column}{0.33\textwidth}
\includegraphics[width=0.90\textwidth]{./images/schematics/illustration_from_1676_article_on_the_speed_of_light.jpg}\\
\end{column}
\begin{column}{0.67\textwidth}
In 1670's, {\bf Olaf Roemer} measured the speed of light by observing the {\bf period of the moons of Jupiter.}\\
\begin{itemize}
{\small
\item The apparent period at Earth is different than true period due to the velocity of the Earth.
\item The variation of the apparent period was
\begin{equation*}
{\Delta}T = T \cdot \frac{2u}{c}
\end{equation*}
where T the true period, u the velocity of the earth and c the speed of light.
\item This allowed the speed of light to be determined to $\sim$~30\%.\\
}
\end{itemize}
\end{column}
\end{columns}
\end{frame}
%
%
%
%
\begin{frame}{Measurements of the speed of light before Maxwell's time}
And in 1848-49, a few years before Maxwell published his famous treatise,
{\bf Hippolyte Fizeau} measured the speed of light to $\sim$5\%.\\
\vspace{0.2cm}
Light passes between two teeth of the rotating gear and gets reflected from a mirror.
If the reflected light again passes between two teeth of the rotating gear,
the speed of light can be calculated from the gear-mirror distance and the speed of rotation.\\
\vspace{0.2cm}
\begin{columns}
\begin{column}{0.40\textwidth}
{\small
Fizeau determined the speed of light between an intense light source and a mirror about 8 km distant.
The light source was interrupted by a rotating cogwheel with 720 notches
that could be rotated at a variable speed of up to hundreds of times a second.\\
}
\end{column}
\begin{column}{0.60\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/schematics/fizeau_experiment_absolute_speed_01.png}\\
\end{center}
\end{column}
\end{columns}
\end{frame}
%
%
%
%
\begin{frame}{Light is an electromagnetic wave!}
Maxwell (with typical British understatement) said that the result
was {\em ``somewhat of a surprise''} !!\\
\vspace{0.1cm}
\begin{columns}
\begin{column}{0.40\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/people/maxwell.jpg}\\
{\small
James Clerk Maxwell\\
(1831 - 1879)
}
\end{center}
\end{column}
\begin{column}{0.60\textwidth}
{\small
{\em ``I made out the equations before I had any suspicion of the nearness between
the two values of the velocity of propagation of magnetic effects and of light, so I think
I have reasons to believe that the magnetic and luminiferous media are identical''.}\\
\vspace{0.3cm}
{\em `We can scarcely avoid the inference that light consists in the transverse undulations
of the same medium which is the cause of electric and magnetic phenomena.}
(Maxwell discussed his ideas in terms of a model in which the vacuum was like an elastic solid.)
}
\end{column}
\end{columns}
\end{frame}
%
%
%
%
\begin{frame}{Light is an electromagnetic wave!}
Let's just think how amazing and unexpected that was!\\
\vspace{0.1cm}
{\bf What was $\epsilon_0$} ? \\
It is the constant of proportionality in Coulomb's law that, connects
charge densities and the resulting electric field $\vec{E}$:
\begin{equation*}
\vec{E} (\vec{r})= \frac{1}{4 \pi {\bf \epsilon_0}}
\int d\tau^{\prime} \rho(\pvec{r}') \frac{\vec{r}-\pvec{r}'}{|\vec{r}-\pvec{r}'|^3}
\end{equation*}
\vspace{0.05cm}
{\bf What was $\mu_0$} ? \\
It is the constant of proportionality in the Biot-Savart law that
connects currents and the resulting magnetic field $\vec{B}$:
\begin{equation*}
\vec{B} (\vec{r}) = \frac{{\bf \mu_0}}{4\pi}
\int d\tau^{\prime} \vec{j}(\pvec{r}') \times \frac{\vec{r}-\pvec{r}'}{|\vec{r}-\pvec{r}'|^3}
\end{equation*}
The fact that the speed of the speed of light is determined by these two (apparently
unrelated to light) constants must have stunned Maxwell (or, in his
works, it was {\em ``somewhat of a surprise''}).
\end{frame}
%
%
%
%
\begin{frame}{The electromagnetic spectrum}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/schematics/emspectrum.png}\\
\end{center}
\end{frame}
%
% Worked example
%
{
\problemslide
%
%
%
%
\begin{frame}{Worked example}
\begin{blockexmplque}{Question}
An electric field $\vec{E}$ is given by:
\begin{equation*}
\vec{E} = E_{0} \cdot sin\Big(k \cdot (x-ct)\Big) \cdot \hat{y}
\end{equation*}
where k is the propagation number.\\
\vspace{0.3cm}
\begin{enumerate}[(a)]
\item Show that it fulfils the wave equation.
\item Find the corresponding magnetic field.
\item Comment on directions and amplitudes.
\end{enumerate}
\end{blockexmplque}
\end{frame}
%
%
%
%
\begin{frame}{Worked example}
First, we will calculate the Laplacian ($\vec{\nabla} \cdot \vec{E}$)
of the given electric field $\vec{E}$:
\begin{equation*}
\vec{E} = E_{0} sin\Big(k(x-ct)\Big) \hat{y}
\end{equation*}
We have:
\begin{equation*}
\vec{\nabla}^{2} \vec{E} =
\frac{\partial^{2} \vec{E}} {\partial x^{2}} +
\cancelto{0}{\frac{\partial^{2} \vec{E}} {\partial y^{2}}} +
\cancelto{0}{\frac{\partial^{2} \vec{E}} {\partial z^{2}}} =
\frac{\partial^{2}} {\partial x^{2}} \bigg\{ E_{0} sin\Big(k(x-ct)\Big) \hat{y} \bigg\} =
\end{equation*}
\begin{equation*}
= E_{0} \bigg\{ \frac{\partial^{2}} {\partial x^{2}} sin\Big(k(x-ct)\Big) \bigg\} \hat{y} =
E_{0} \bigg\{ k \frac{\partial} {\partial x} cos\Big(k(x-ct)\Big) \bigg\} \hat{y} =
\end{equation*}
\begin{equation*}
= E_{0} \bigg\{ - k^2 sin\Big(k(x-ct)\Big) \bigg\} \hat{y} =
- k^2 \bigg\{ E_{0} sin\Big(k(x-ct)\Big) \hat{y} \bigg\} \Rightarrow
\end{equation*}
\begin{equation*}
\vec{\nabla}^{2} \vec{E} = - k^2 \vec{E}
\end{equation*}
\end{frame}