-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathslides_lecture09_optional.tex
264 lines (199 loc) · 8.17 KB
/
slides_lecture09_optional.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
\begin{frame}[plain,c]
\begin{center}
{\Huge \bf Optional reading for Lecture \thislecture}
\end{center}
\end{frame}
% ------------------------------------------------------------------------------
%
%
%
%
\begin{frame}{Energy carried by electromagnetic waves}
We will see that the {\em energy carried away from the volume $\tau$ by an e/m wave
through the surface S} is given by:
\begin{equation*}
\oint_{S} d\vec{S} \cdot \frac{1}{\mu_0} \Big( \vec{E} \times \vec{B} \Big)
\end{equation*}
\vspace{0.3cm}
Let's assume that I have an electric field $\vec{E}$ and a magnetic field $\vec{B}$ within some volume $\tau$.
A charge q moves within that volume with velocity $\vec{u}$ and it is displaced by a short distance $d\vec{\ell}$.
\begin{itemize}
\item There is work done by the e/m force.
\item The energy has to come from somewhere.
\begin{itemize}
\item Where from? Well, there is the energy
$\displaystyle \frac{1}{2} \int_{\tau} d\tau \Big( \epsilon_0 |\vec{E}|^2 + \frac{1}{\mu_0} |\vec{B}|^2 \Big)$
stored in the e/m field.
\item So, if there is work done on the charge, the energy stored in the e/m field must be decreased.
\end{itemize}
\end{itemize}
\end{frame}
%
%
%
%
\begin{frame}{Energy carried by electromagnetic waves}
The work done by the Lorentz force is:
\begin{equation*}
dW = \vec{F} \cdot d\vec{\ell} = q \Big( \vec{E} + \vec{u} \times \vec{B} \Big) \cdot \vec{u} dt
\end{equation*}
We have already seen that magnetic forces do no work:
The $\vec{u} \times \vec{B}$ vector is perpendicular to $\vec{u}$ so the dot product
$\Big( \vec{u} \times \vec{B} \Big) \cdot \vec{u}$ is 0.
So the work done can be written just as
\begin{equation*}
dW = \vec{F} \cdot d\vec{\ell} = q \vec{E} \cdot \vec{u} dt
\end{equation*}
To move from the discrete to the continuous case, take q to be the amount of charge contained
within a volume $d\tau$ within a region characterised by charge density $\rho$.
Then
\begin{equation*}
dW = q \vec{E} \cdot \vec{u} dt \rightarrow \Big( \rho d\tau \Big) \vec{E} \cdot \vec{u} dt =
dt d\tau \vec{E} \cdot \Big( \rho \vec{u} \Big)
\end{equation*}
\end{frame}
%
%
%
%
\begin{frame}{Energy carried by electromagnetic waves}
The work done per unit time, in the infinitesimal volume $d\tau$ is:
\begin{equation*}
\frac{dW}{dt} = d\tau \vec{E} \cdot \Big( \rho \vec{u} \Big)
\end{equation*}
As we have seen, the product $\rho \vec{u}$ is the current density $\vec{j}$. Therefore, the work done per unit time and per unit volume can be written as:
\begin{equation*}
\frac{dW}{dt} = d\tau \vec{E} \cdot \vec{j}
\end{equation*}
The total work (integrated over all space) per unit time is:
\begin{equation*}
\frac{dW}{dt} = \int_{\tau} d\tau \vec{E} \cdot \vec{j}
\end{equation*}
To proceed, we need to examine the dot product $\vec{E} \cdot \vec{j}$ of the electric field $\vec{E}$ and the current density $\vec{j}$.
\end{frame}
%
%
%
%
\begin{frame}{Energy carried by electromagnetic waves}
Starting from Ampere's law, we can write $\vec{j}$ in terms of
$\vec{\nabla} \times \vec{B}$ and $\frac{\partial \vec{E}}{\partial t}$:
\begin{equation*}
\vec{\nabla} \times \vec{B} = \mu_0 \Big( \vec{j} + \epsilon_0 \frac{\partial \vec{E}}{\partial t} \Big) \Rightarrow
\vec{j} = \frac{1}{\mu_0} \vec{\nabla} \times \vec{B} - \epsilon_0 \frac{\partial \vec{E}}{\partial t}
\end{equation*}
Therefore:
\begin{equation*}
\vec{E} \cdot \vec{j} =
\vec{E} \cdot \Big( \frac{1}{\mu_0} \vec{\nabla} \times \vec{B} - \epsilon_0 \frac{\partial \vec{E}}{\partial t} \Big) =
\frac{1}{\mu_0} \vec{E} \cdot \Big( \vec{\nabla} \times \vec{B} \Big) - \epsilon_0 \vec{E} \cdot \frac{\partial \vec{E}}{\partial t}
\end{equation*}
The cross-product term can be written as:
\begin{equation*}
\vec{E} \cdot \Big( \vec{\nabla} \times \vec{B} \Big) =
- \vec{\nabla} \cdot \Big( \vec{E} \times \vec{B} \Big) - \vec{B} \cdot \frac{\partial \vec{B}}{\partial t}
\end{equation*}
Try to prove it at home! (Details on the next slide.)
\end{frame}
%
%
%
%
\begin{frame}{Further details (skip on a first read)}
Starting from $\vec{\nabla} \cdot \Big( \vec{E} \times \vec{B} \Big)$,
we can write using the {\em CAB-BAC} identity:
\begin{equation*}
\vec{\nabla} \cdot \Big( \vec{E} \times \vec{B} \Big) =
\vec{B} \cdot \Big( \vec{\nabla} \times \vec{E} \Big) - \vec{E} \cdot \Big( \vec{\nabla} \times \vec{B} \Big)
\end{equation*}
The $\vec{E} \cdot \Big( \vec{\nabla} \times \vec{B} \Big)$ term
is what appears in the $\vec{E} \cdot \vec{j}$ dot product.\\
Solving for it:
\begin{equation*}
\vec{E} \cdot \Big( \vec{\nabla} \times \vec{B} \Big) =
- \vec{\nabla} \cdot \Big( \vec{E} \times \vec{B} \Big) + \vec{B} \cdot \Big( \vec{\nabla} \times \vec{E} \Big)
\end{equation*}
From Faraday's law:
\begin{equation*}
\vec{\nabla} \times \vec{E} = - \frac{\partial \vec{B}}{\partial t}
\end{equation*}
Therefore:
\begin{equation*}
\vec{E} \cdot \Big( \vec{\nabla} \times \vec{B} \Big) =
- \vec{\nabla} \cdot \Big( \vec{E} \times \vec{B} \Big) - \vec{B} \cdot \frac{\partial \vec{B}}{\partial t}
\end{equation*}
\end{frame}
%
%
%
%
\begin{frame}{Energy carried by electromagnetic waves}
\begin{equation*}
\vec{E} \cdot \vec{j} =
- \frac{1}{\mu_0} \vec{\nabla} \cdot \Big( \vec{E} \times \vec{B} \Big)
- \frac{1}{\mu_0} \vec{B} \cdot \frac{\partial \vec{B}}{\partial t} - \epsilon_0 \vec{E} \cdot \frac{\partial \vec{E}}{\partial t}
\end{equation*}
For a vector field $\vec{F}$, we can easily see that:
\begin{equation*}
\vec{F} \cdot \frac{\partial \vec{F}}{\partial t} = \frac{1}{2} \frac{\partial |\vec{F}|^2}{\partial t}
\end{equation*}
and, therefore:
\begin{equation*}
\vec{E} \cdot \vec{j} =
- \frac{1}{\mu_0} \vec{\nabla} \cdot \Big( \vec{E} \times \vec{B} \Big)
- \frac{1}{2\mu_0} \frac{\partial |\vec{B}|^2}{\partial t} - \frac{\epsilon_0}{2} \frac{\partial |\vec{E}|^2}{\partial t} \Rightarrow
\end{equation*}
\begin{equation*}
\vec{E} \cdot \vec{j} =
- \frac{1}{\mu_0} \vec{\nabla} \cdot \Big( \vec{E} \times \vec{B} \Big)
- \frac{\partial}{\partial t} \Big( \frac{1}{2\mu_0} |\vec{B}|^2 + \frac{\epsilon_0}{2} |\vec{E}|^2 \Big)
\end{equation*}
\end{frame}
%
%
%
%
\begin{frame}{Energy carried by electromagnetic waves}
The total work done per unit time is given, as we have seen, by integrating
$\vec{E} \cdot \vec{j}$ over the whole volume $\tau$:
\begin{equation*}
\frac{dW}{dt} = \int_{\tau} d\tau \vec{E} \cdot \vec{j} =
- \int_{\tau} d\tau \frac{1}{\mu_0} \vec{\nabla} \cdot \Big( \vec{E} \times \vec{B} \Big)
- \frac{\partial}{\partial t} \int_{\tau} d\tau \Big( \frac{1}{2\mu_0} |\vec{B}|^2 + \frac{\epsilon_0}{2} |\vec{E}|^2 \Big)
\end{equation*}
\vspace{0.2cm}
Using Gauss' theorem, the volume integral of the divergence of a vector field can be replaced by the
surface integral of that field:
\begin{equation*}
\frac{dW}{dt} =
- \oint_{S} d\vec{S} \cdot \frac{1}{\mu_0} \Big( \vec{E} \times \vec{B} \Big)
- \frac{\partial}{\partial t} \int_{\tau} d\tau \Big( \frac{1}{2\mu_0} |\vec{B}|^2 + \frac{\epsilon_0}{2} |\vec{E}|^2 \Big)
\end{equation*}
As anticipated, the above tells you that the {\bf work done on the charge q} is, indeed, related with the
{\bf decrease of the energy stored in the e/m field} (2nd term on right-hand side).
\end{frame}
%
%
%
%
\begin{frame}{Energy carried by electromagnetic waves}
But there is another term on the right-hand side of:
\begin{equation*}
\frac{dW}{dt} =
- \oint_{S} d\vec{S} \cdot \frac{1}{\mu_0} \Big( \vec{E} \times \vec{B} \Big)
- \frac{\partial}{\partial t} \int_{\tau} d\tau \Big( \frac{1}{2\mu_0} |\vec{B}|^2 + \frac{\epsilon_0}{2} |\vec{E}|^2 \Big)
\end{equation*}
It is the surface term:
\begin{equation*}
\oint_{S} d\vec{S} \cdot \frac{1}{\mu_0} \Big( \vec{E} \times \vec{B} \Big)
\end{equation*}
What does that term correspond to?\\
\vspace{0.2cm}
This term describes the {\em energy carried away from the volume $\tau$,
through its surface S, by the electromagnetic fields}.\\
\vspace{0.2cm}
So the energy stored in the e/m field in volume $\tau$ is decreased, because of the
work done on the charge, but also because energy is flowing out.\\
\vspace{0.2cm}
This is the {\bf Poynting theorem}.
\end{frame}