-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathslides_lecture10_summary.tex
205 lines (168 loc) · 6.34 KB
/
slides_lecture10_summary.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
\renewcommand{\summarizedlecture}{10 }
%
%
%
\begin{frame}{Lecture \summarizedlecture - \lecturesummarytitle}
{\small
We studied the most general case of Maxwell's equations:\\
\setlength{\extrarowheight}{12pt}
\setlength{\arraycolsep}{5pt}
\begin{center}
{
\begin{table}[H]
\begin{tabular}{|l|c|c|}
\hline
\multicolumn{3}{|l|} {
{\color{magenta}
{\bf Dynamic case in matter}
}
}\\
\hline
{\bf Gauss's law} &
$\displaystyle \oint \vec{D} \cdot d\vec{S} =
\int \rho_f d\tau = Q_f$ &
$\displaystyle \vec{\nabla} \cdot \vec{D} =
\rho_f$ \\
{\bf Faraday's law} &
$\displaystyle \oint \vec{E} \cdot d\vec{\ell} =
-\frac{\partial}{\partial t} \int \vec{B} \cdot d\vec{S} \Rightarrow$ &
$\displaystyle \vec{\nabla} \times \vec{E} =
- \frac{\partial \vec{B}}{\partial t}$ \\
&
$\displaystyle \oint \vec{E} \cdot d\vec{\ell} =
-\frac{d\Phi_B}{dt}$ & \\
{\bf Gauss's law} (magn.) &
$\displaystyle \oint \vec{B} \cdot d\vec{S} = 0$ &
$\displaystyle \vec{\nabla} \cdot \vec{B} = 0$ \\
{\bf Ampere's law} &
$\displaystyle \oint \vec{H} \cdot d\vec{\ell} =
\int_{S} \Big( \vec{j} + \frac{\partial \vec{D}}{\partial t}\Big) \cdot d\vec{S} \Rightarrow$ &
$\displaystyle \vec{\nabla} \times \vec{H} = \vec{j}_f + \frac{\partial \vec{D}}{\partial t}$ \\
&
$\displaystyle \oint \vec{H} \cdot d\vec{\ell} = I_f + \frac{d\Phi_D}{dt}$ & \\
\hline
\end{tabular}
\end{table}
}
\end{center}
}
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture - \lecturesummarytitle (cont'd)}
\begin{itemize}
\item As we did in vacuum, we studied Maxwell's equations in matter (for time-dependent fields)
and in the absence of sources and we saw that they give rise to EM waves:
\begin{equation*}
\vec{\nabla}^{2} \vec{E} = \mu \epsilon \frac{\partial^{2} \vec{E}}{\partial t^{2}} \;\;\;\; and \;\;\;\;
\vec{\nabla}^{2} \vec{B} = \mu \epsilon \frac{\partial^{2} \vec{B}}{\partial t^{2}}
\end{equation*}
\item Speed of EM waves in matter: $\displaystyle u = \frac{1}{\sqrt{\epsilon \mu}}$
\begin{itemize}
{\small
\item EM waves in matter propagate slower than EM waves in vacuum
\item $\displaystyle u = \frac{c}{n}$ where
$\displaystyle n = \frac{\sqrt{\epsilon \mu}}{\sqrt{\epsilon_0 \mu_0}}$
is the index of refraction of the material.
}
\end{itemize}
\item We introduced a complex representation of EM waves starting from de Moivre's theorem
and embedding the known EM wave properties (EM waves are always {\bf transverse} and
{\bf mutually perpendicular}):
\begin{equation*}
\vec{E}(\vec{r},t) = E_0 e^{i (\vec{k} \vec{r} -\omega t)} \hat{n}
\;\;\; and \;\;\;
\vec{B}(\vec{r},t) =
\frac{E_0}{c} e^{i ( \vec{k} \vec{r} -\omega t)} \Big( \hat{k} \times \hat{n} \Big) =
\frac{1}{c} \Big( \hat{k} \times \vec{E} \Big)
\end{equation*}
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture - \lecturesummarytitle (cont'd)}
\begin{itemize}
\item We also studied EM wave polarization and practical applications.
\item
We can transform unpolarized visible light into polarized light by passing
it through a {\bf polarizing sheet}.\\
\item
If $I_0$ is the intensity of the unpolarized light,
the intensity $I$ of the transmitted light is:
\begin{equation*}
I = \frac{1}{2}I_0
\end{equation*}
\item
If the light reaching the filter is already polarized,
the intensity $I$ of the transmitted light is:
\begin{equation*}
I = I_0 cos^2\theta
\end{equation*}
where $\theta$ is the angle between the electric field $\vec{E}$
and the polarizing direction of the sheet.
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture - \lecturesummarytitle (cont'd)}
\begin{itemize}
\item Finally, we studied the electrodynamic boundary conditions:\\
\vspace{0.2cm}
For the electric field:
\begin{equation*}
\epsilon_1 E_1^{\perp} = \epsilon_2 E_2^{\perp} \;\;\;\; and \;\;\;\;
E_1^{\parallel} = E_2^{\parallel}
\end{equation*}
For the magnetic field:
\begin{equation*}
B_1^{\perp} = B_2^{\perp} \;\;\;\; and \;\;\;\;
\frac{1}{\mu_1} B_1^{\parallel} = \frac{1}{\mu_2} B_2^{\parallel}
\end{equation*}
\item We used the above conditions to study what happens when
an EM wave crosses the {\bf boundary between two transparent media}\\
\vspace{0.2cm}
Two cases:
\begin{itemize}
\item Normal incidence
\item Oblique incidence (general case / home study)
\end{itemize}
We reproduced the laws of geometric optics!
\end{itemize}
\end{frame}
% %
% %
% %
%
% \begin{frame}{Lecture \summarizedlecture - \lecturesummarytitle (cont'd)}
%
% \begin{itemize}
% {\small
% \item Maxwell's equations in most general form (time-dependent fields in matter)
% \begin{itemize}
% {\scriptsize
% \item You should know both the integral and differential forms.
% \item You should know all variations of these equations and be able to derive
% one from another (dynamic $\rightarrow$ static, matter $\rightarrow$ vacuum)
% \item No marks given for writing the wrong set of equations, even if they are all
% similar and interconnected.\\
% }
% \end{itemize}
%
% \item You should be able to show that Maxwell's equations (in vacuum or in matter) in
% absence of sources describe EM waves
%
% \item You should know how the wave equation and the EM waves are different in vacuum and in transparent media.
%
% \item You should know how to use the complex representation of waves.
%
% \item You should know (and be able to derive) the electrodynamic boundary conditions,
% and you should be able to use them to study reflection and transmission at normal and oblique incidence.
%
% \item You should remember the fundamental laws of geometrical optics and what is Brewster's angle.
% }
% \end{itemize}
%
% \end{frame}