-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathslides_lecture11_main.tex
1949 lines (1495 loc) · 48 KB
/
slides_lecture11_main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\renewcommand{\prevlecture}{10 }
\renewcommand{\thislecture}{11 }
\renewcommand{\nextlecture}{12 }
%
% Cover page
%
\title[PHYS 201 / Lecture \thislecture]
{
PHYS 201 / Lecture \thislecture\\
{\it Mutual and self inductance; \\ Inductance in circuits; RL, LC and RLC circuits}\\
}
\input{slides_author.tex}
\begin{frame}[plain]
\titlepage
\end{frame}
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
% Revision of previous lecture
%
\renewcommand{\lecturesummarytitle}{Revision }
\input{slides_lecture10_summary.tex}
%
% Plan for this lecture
%
\begin{frame}{Plan for Lecture \thislecture}
\begin{itemize}
\item Mutual and self inductance
\item Inductance in circuits
\begin{itemize}
\item RL circuits
\item LC circuits
\item RLC circuits
\end{itemize}
\end{itemize}
\end{frame}
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
%
%
\begin{frame}{Mutual inductance}
Consider two closed conductor loops (1 and 2) at rest, as shown.
\begin{columns}
\begin{column}{0.55\textwidth}
\begin{center}
\includegraphics[width=0.90\textwidth]{./images/schematics/mutual_inductance_1.png}\\
\end{center}
\end{column}
\begin{column}{0.45\textwidth}
\begin{itemize}
\item A steady current $I_1$ circulates in loop 1.
\vspace{0.4cm}
\item The current $I_1$ generates a magnetic field $B_1$.
\vspace{0.4cm}
\item Some of the flux of the magnetic field $B_1$ goes through the surface $S_2$
\end{itemize}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Mutual inductance}
The magnetic field due to the current $I_1$ flowing in loop 1 is given by the Biot-Savart law:
\begin{equation*}
\vec{B}_1 = \frac{\mu_0}{4\pi} I_1 \oint_{L_1} \frac{d\vec{\ell_1} \times \vec{r}}{r^3}
\end{equation*}
The flux through the surface of loop 2, of the magnetic field $\vec{B}_1$ produced by loop 1 is:
\begin{equation*}
\Phi_2 = \int_{S_2} \vec{B}_1 \cdot d\vec{S_2}
\end{equation*}
Therefore:
\begin{equation*}
\Phi_2 = \int_{S_2}
{\color{magenta} \Big\{ }
\frac{\mu_0}{4\pi} I_1 \oint_{L_1} \frac{d\vec{\ell_1} \times \vec{r}}{r^3}
{\color{magenta} \Big\} } \cdot d\vec{S_2}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Mutual inductance}
\begin{equation*}
\Phi_2 = \int_{S_2}
{\color{magenta} \Big\{ }
\frac{\mu_0}{4\pi} I_1 \oint_{L_1} \frac{d\vec{\ell_1} \times \vec{r}}{r^3}
{\color{magenta} \Big\} } \cdot d\vec{S_2} \Rightarrow
\end{equation*}
\begin{equation*}
\Phi_2 = {\color{magenta}\bigg\{ }
\frac{\mu_0}{4\pi} \int_{S_2} \Big\{ \oint_{L_1} \frac{d\vec{\ell_1} \times \vec{r}}{r^3} \Big\} \cdot d\vec{S_2}
{\color{magenta}\bigg\} } I_1 \Rightarrow
\end{equation*}
\begin{equation*}
{\color{magenta} \Phi_2 = M_{21} I_1 }
\end{equation*}
where
\begin{equation*}
M_{21} = \frac{\mu_0}{4\pi} \int_{S_2} \Big\{ \oint_{L_1} \frac{d\vec{\ell_1} \times \vec{r}}{r^3} \Big\} \cdot d\vec{S_2}
\end{equation*}
\vspace{0.3cm}
{\bf The flux $\Phi_2$ is proportional to $I_1$}.\\
\vspace{0.2cm}
The constant of proportionality ($M_{21}$) is known as {\bf mutual inductance}.\\
$M_{21}$ is a {\bf purely geometrical} factor.
\end{frame}
%
%
%
\begin{frame}{Mutual inductance}
A simpler formula for $M_{21}$ can be derived by expressing the magnetic field
$\vec{B}$ in terms of its vector potential $\vec{A}$ and using Stokes's theorem.
\vspace{0.2cm}
\begin{columns}
\begin{column}{0.40\textwidth}
\begin{center}
\includegraphics[width=0.80\textwidth]{./images/schematics/mutual_inductance_2.png}\\
\end{center}
\end{column}
\begin{column}{0.60\textwidth}
\begin{equation*}
M_{21} = \frac{\mu_0}{4\pi} \oint_{L_1} \oint_{L_2} \frac{d\vec{\ell_1} \cdot d\vec{\ell_2}}{r}
\end{equation*}
This is the {\bf Neumann formula} (without proof):
It involves a double line integral - one integration is around loop 1 and the other integration is around loop 2.
\end{column}
\end{columns}
It reveals 2 important things about the mutual inductance:
\begin{itemize}
{\small
\item It is purely geometrical, as we have already discussed.
(It has to do only with the shape, size and relative positions of the 2 loops.)
\item It is {\bf unchanged if one switches the roles of loop 1 and 2}
\begin{itemize}
{\small
\item So $M_{21}$ = $M_{12}$ !
}
\end{itemize}
}
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Mutual inductance}
Mutual inductance unchanged if one switches the roles of loop 1 and 2.\\
\vspace{0.2cm}
\begin{columns}
\begin{column}{0.30\textwidth}
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/schematics/mutual_inductance_1.png}\\
\end{center}
\end{column}
\begin{column}{0.70\textwidth}
{\small
This is a {\bf remarkable conclusion}!\\
\vspace{0.2cm}
\underline{Whatever} the shapes and positions of the loops,
the flux through loop 2 when we run a current I around loop 1 is
identical to the flux through loop 1 when we run the same current around loop 2.
\begin{equation*}
\Phi_2 = M_{21} I_1 \xRightarrow{I_1 = I} \Phi_2 = M_{21} I
\end{equation*}
\begin{equation*}
\Phi_1 = M_{12} I_2 \xRightarrow{I_2 = I; M_{12} = M_{21}} \Phi_1 = M_{12} I \Rightarrow
{\color{magenta}
\Phi_1 = \Phi_2
}
\end{equation*}
}
\end{column}
\end{columns}
\begin{columns}
\begin{column}{0.20\textwidth}
\begin{center}
\includegraphics[width=0.70\textwidth]{./images/people/henry.jpg}\\
{\tiny J.Henry, 1797-1878}
\end{center}
\end{column}
\begin{column}{0.80\textwidth}
{\small
From now on I will drop the indices: $M_{21}$ = $M_{12}$ = {\color{magenta} $M$ }\\
The SI unit of the mutual inductance is the {Henry} (H)
\begin{itemize}
\item Named in honour of Joseph Henry.
\item 1 H = $\displaystyle \frac{Wb}{A}$ = $\displaystyle \frac{V \cdot s}{A}$
\end{itemize}
}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Mutual inductance}
Before, $I_1$ was a steady current, so the field $\vec{B}_1$ did not change with time.\\
The conducting loops were fixed in their positions so $\Phi_2$ was also constant.\\
\vspace{0.3cm}
Now, let’s consider {\bf what happens if $I_1$ varies}:
\begin{itemize}
\item time-varying current $\rightarrow$ time-varying magnetic field
\item time-varying magnetic field $\rightarrow$ time-varying flux through loop 2.
\end{itemize}
\vspace{0.3cm}
Faraday's law tells us that this time-varying flux through loop 2 will
generate an EMF in loop 2:
\begin{equation*}
\mathcal{E}_2 = - \frac{d\Phi_2}{dt} = - \frac{d}{dt} \Big( M I_1 \Big) = - M \frac{dI_1}{dt}
\end{equation*}
\vspace{0.2cm}
Varying the current in a loop, {\bf causes an EMF} (and a current) {\bf in a nearby loop},
although the two loops are not connected electrically.
\begin{itemize}
\item They are connected ``magnetically''
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Self inductance}
Varying the current in loop 1, varies the magnetic field and thus the magnetic
flux passing through loop 1 itself!\\
\vspace{0.3cm}
Again, we can write that:
\begin{equation*}
\mathcal{E}_1 = - L \frac{dI_1}{dt}
\end{equation*}
where the constant of proportionality is called {\bf self-inductance of the loop}
(or simply inductance) and it is denoted with L (in honour of H.Lenz).
\end{frame}
%
%
%
\begin{frame}{Self inductance / ``Back EMF''}
As we have seen, if you try to change the current in a loop,
there will be an EMF developed in that same loop as a result of the current change.
\begin{equation*}
\mathcal{E} = - L \frac{dI}{dt}
\end{equation*}
Remember Lenz's law: {\bf Nature dislikes changes in the magnetic flux.}
\vspace{0.2cm}
The EMF developed in the loop, as a result of the current change,
will be such so as to {\bf oppose the current change}. \\
For that reason, it is called {\bf back EMF} (or {\bf counter EMF}).
\vspace{0.2cm}
{\bf Inductance may be thought of as electromagnetic inertia}.
\begin{itemize}
{\small
\item You can think that inductance plays in electromagnetism a role similar
to that of mass in mechanics.
\item In the same way that it is more difficult to change the velocity of a body
that has a larger mass, it is more difficult to change the current in a circuit
that has a larger inductance.
}
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Faraday's experiment}
Faraday's experiment showing induction between coils of wire.
\begin{center}
\includegraphics[width=0.53\textwidth]{./images/schematics/faraday_induction_experiment.png}\\
\end{center}
{\scriptsize
The liquid battery (right) provides a current which flows through the small coil (A),
creating a magnetic field. When the coils are stationary, no current is induced.
But when the small coil is moved in or out of the large coil (B),
the magnetic flux through the large coil changes,
inducing a current which is detected by the galvanometer (G)
[Wikipedia].\\
}
\end{frame}
%
%
%
\begin{frame}{Inductance}
We have seen the concepts of {\bf mutual} and {\bf self inductance}.\\
\vspace{0.2cm}
{\bf A change in current flow in a conductor induces a voltage (EMF)}
\begin{itemize}
\item in the same conductor (self-inductance): \\
$\displaystyle \mathcal{E} = - L \frac{dI}{dt}$
\item and in neighbouring conductors (mutual inductance):\\
$\displaystyle \mathcal{E}_{neighbouring\;loop} = - M \frac{dI}{dt}$
\end{itemize}
\vspace{0.2cm}
In both cases the inductance (mutual or self) is the {\bf constant of proportionality}
between the EMF developed and the rate of current change.
\vspace{0.2cm}
Inductance, like capacitance, is an {\bf intrinsically positive quantity}.
\end{frame}
%
%
%
%
%\begin{frame}{Inductance: An application from everyday life}
%
%Induction cooking heats a cooking vessel by magnetic induction,
%instead of by thermal conduction from a flame, or an electrical heating element.
%
%\vspace{0.2cm}
%
%\begin{columns}
% \begin{column}{0.58\textwidth}
% \begin{center}
% \includegraphics[width=0.98\textwidth]{./images/photos/induction_cooktop_rolling_boil.jpg}\\
% \end{center}
% \end{column}
% \begin{column}{0.42\textwidth}
% {\small
% In an induction cooker, a coil of copper wire is placed under the cooking pot and an alternating
% electric current is passed through it. The resulting oscillating magnetic field induces a magnetic flux
% which repeatedly magnetises the pot, treating it like the lossy magnetic core of a transformer.
% This produces large eddy currents in the pot, which because of the resistance of the pot, heats it
% [Wikipedia].
% }
% \end{column}
%\end{columns}
%
%\end{frame}
%
%
%
%
\begin{frame}{Inductance: An application from everyday life}
{\bf Inductive wireless charging!}
\vspace{0.3cm}
\begin{columns}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/photos/electric_car_wireless_parking_charge_closeup.jpg}\\
\end{center}
\end{column}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/schematics/non_contact_charging.png}\\
\end{center}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Inductance: An application from everyday life}
{\bf Inductive wireless charging!}
\vspace{0.1cm}
\begin{center}
\includegraphics[width=0.90\textwidth]{./images/photos/inductive_charging_phone.png}\\
\end{center}
\end{frame}
%
%
%
\begin{frame}{Inductors and inductance}
An inductor is an electrical component which {\bf resists changes in electric current passing through it}.\\
\vspace{0.3cm}
An inductor is {\bf characterized by its inductance}
\begin{itemize}
\item Typical values in the $\mu$H to H range.
\end{itemize}
\vspace{0.3cm}
It typically consists of a conductor such as a wire wound into a coil.\\
\vspace{0.3cm}
\begin{center}
\includegraphics[width=0.45\textwidth]{./images/photos/inductors.jpg}\\
\end{center}
\end{frame}
%
%
%
\begin{frame}{Solenoids}
A solenoid is a coil wound into a tightly packed helix,
and whose length is substantially greater than its diameter.\\
\begin{itemize}
{\small
\item Often wrapped around a metallic core which produces a uniform magnetic field.
}
\end{itemize}
\begin{center}
\includegraphics[width=0.40\textwidth]{./images/schematics/solenoid_1.png}\\
\end{center}
In a previous lecture we calculated the magnetic field produced
by a solenoid within its volume:
\begin{equation*}
B = \mu_0 \cdot n \cdot I
\end{equation*}
where n is the number of windings per unit length and I is the current flowing in the coil.
\end{frame}
%
%
%
\begin{frame}{Inductance of solenoid}
If a current I produces a magnetic flux $\Phi_B$ in a loop, the inductance is defined to be:
\begin{equation*}
L = \frac{\Phi_B}{I}
\end{equation*}
If the inductor is a coil made of N loops:
\begin{equation*}
L = \frac{N \cdot \Phi_B}{I}
\end{equation*}
All the windings are linked by the shared flux $\Phi_B$.
The product $N \cdot \Phi_B$ is called the {\bf magnetic flux linkage}.
\end{frame}
%
%
%
\begin{frame}{Inductance of solenoid}
Consider a solenoid with n turns per unit length and area A.\\
\vspace{0.2cm}
The magnetic field is:
\begin{equation*}
B = \mu_0 \cdot n \cdot I
\end{equation*}
Over length x (away from its ends) the magnetic flux linkage is:
\begin{equation*}
N \cdot \Phi_B = \Big( n \cdot x \Big) \cdot \Big( B \cdot A \Big)
\end{equation*}
Hence:
\begin{equation*}
L =
\frac{N \cdot \Phi_B}{I} =
\frac{\Big( n \cdot x \Big) \cdot \Big( B \cdot A \Big)}{I} =
\frac{\Big( n \cdot x \Big) \cdot \Big( (\mu_0 \cdot n \cdot I) \cdot A \Big)}{I} =
\mu_0 \cdot n^2 \cdot x \cdot A
\end{equation*}
The inductance per unit length (far from the ends of the solenoid) is:
\begin{equation*}
{\color{magenta}
L = \mu_0 \cdot n^2 \cdot A
}
\end{equation*}
\end{frame}
%...............................................................................
%
% Worked example
%
{
\problemslide
\begin{frame}{Worked example}
\begin{blockexmplque}{Question}
Two coils are at fixed locations. When coil 1 has no current and the
current in coil 2 increases at the rate 15.0 A/s,
the emf in coil 1 is 25.0 mV.
\begin{itemize}
\item What is their mutual inductance?
\item When coil 2 has no current and coil 1 has a current of 3.60 A,
what is the flux linkage in coil 2?
\end{itemize}
\end{blockexmplque}
\begin{equation*}
M = \frac{\mathcal{E}_1}{|dI_2/dt|} \Rightarrow
M = \frac{25.0\; mV}{15.0\; A/s} = 1.67 \; mH
\end{equation*}
\begin{equation*}
N_2 \Phi_{21} = M I_1 \Rightarrow
N_2 \Phi_{21} = (1.67 \; mH) (3.60 \; mWb) = 6.0 \; mWb
\end{equation*}
\end{frame}
} % \problemslide
%...............................................................................
%
% Worked example
%
{
\problemslide
\begin{frame}{Worked example}
\begin{blockexmplque}{Question}
A solenoid that is 85.0 cm long has a cross-sectional area of 17.0
cm$^2$. There are 950 turns of wire carrying a current of 6.60 A.\\
\begin{itemize}
\item Calculate the energy density of the magnetic field inside the
solenoid.
\item Find the total energy stored in the magnetic field there.
\end{itemize}
\end{blockexmplque}
At any point in the solenoid the magnetic energy density is given by:
\begin{equation*}
u_B = \frac{B^2}{2\mu_0}
\end{equation*}
where B is the magnitude of the magnetic field, given by:
\begin{equation*}
B = \mu_0 n I
\end{equation*}
where n for the solenoid of this problem is:
\begin{equation*}
n = (950 \; turns)/(0.850 \; m) = 1.118 \times 10^{3} m^{-1}
\end{equation*}
\end{frame}
%
%
%
%
\begin{frame}{Worked example}
The magnetic energy density is:
\begin{equation*}
u_B = \frac{(\mu_0 n I)^2}{2\mu_0} = \frac{1}{2} \mu_0 n^2 I^2 \Rightarrow
\end{equation*}
\begin{equation*}
u_B = \frac{1}{2} (4\pi \times 10^{-7} \; T \cdot m/A)(1.118 \times
10^3 \; m^{-1})^2 (6.60\; A)^2 = 34.2 \; J/m^3
\end{equation*}
Since the magnetic field is uniform inside an ideal solenoid, the
total energy stored in the field is
\begin{equation*}
U_B = u_B V
\end{equation*}
where V is the volume of the solenoid.
V is calculated as the product of the cross-sectional area and the
length:
\begin{equation*}
V = (17.0 \times 10^{-4} \; m^2)(0.850 \; m) = 1.445 \times 10^{-3} \; m^3
\end{equation*}
Thus:
\begin{equation*}
U_B = (34.2 \; J/m^3) (1.445 \times 10^{-3} \; m^3) = 4.942 \times 10^{-2} \; J
\end{equation*}
\end{frame}
} % \problemslide
%...............................................................................
%
% Worked example
%
{
\problemslide
\begin{frame}{Worked example}
\begin{blockexmplque}{Question}
A 12 H inductor carries a current of 2.0 A. At what rate must the
current be changed to produce a 60 V emf in the inductor?
\end{blockexmplque}
\begin{equation*}
\mathcal{E} = -L \frac{dI}{dt} \Rightarrow
\end{equation*}
\begin{equation*}
\frac{dI}{dt} = -\frac{\mathcal{E}}{L} = -\frac{60\; V}{12 \; H} = -5.0 \; A/s
\end{equation*}
We might, for example, uniformly reduce the current from 2.0 A to
zero in 40 ms.
\end{frame}
} % \problemslide
%...............................................................................
%
% Worked example
%
{
\problemslide
\begin{frame}{Worked example}
\begin{blockexmplque}{Question}
Two coils are fixed in place in close proximity.\\
Coil 1 has self-inductance L$_{1}$ = 25 mH and N$_{1}$ = 100 turns.\\
Coil 2 has self-inductance L$_{2}$ = 40 mH and N$_{2}$ = 200 turns.\\
Their mutual inductance M is 3.0 mH.
A 6.0 mA current in coil 1 is changing at the rate of 4.0 A/s.
\begin{itemize}
\item What magnetic flux $\Phi_{11}$ links coil 1?
\item What self-induced EMF appears in coil 1?
\item What magnetic flux $\Phi_{21}$ links coil 2?
\item What mutually induced EMF appears in coil2?
\end{itemize}
\end{blockexmplque}
\end{frame}
%
%
%
%
\begin{frame}{Worked example}
The flux in coil 1 is:
\begin{equation*}
\frac{L_1 I_1}{N_1} = \frac{(25 \; mH)(6.0 \; mA)}{100} = 1.5 {\mu}Wb
\end{equation*}
The magnitude of the self-induced EMF in coil 1 is:
\begin{equation*}
L_1 \frac{dI_1}{dt} = (25 \; mH) (4.0 \; A/s) = 1.0 \times 10^2 mV
\end{equation*}
The flux in coil 2 is:
\begin{equation*}
\frac{M I_1}{N_2} = \frac{(3 \; mH)(6.0 \; mA)}{200} = 90 nWb
\end{equation*}
The mutually induced EMF in coil 2 is:
\begin{equation*}
\frac{M dI_1}{dt} = (3 \; mH)(4.0 \; A/s)= 12 mV
\end{equation*}
\end{frame}
} % \problemslide
%...............................................................................
%
% Worked example
%
{
\problemslide
\begin{frame}{Worked example}
\vspace{-0.2cm}
\begin{blockexmplque}{Question}
\vspace{-0.4cm}
\begin{columns}
\begin{column}{0.24\textwidth}
\begin{center}
\includegraphics[width=0.95\textwidth]{./images/problems/lect11_wire_and_loop}\\
\end{center}
\end{column}
\begin{column}{0.76\textwidth}
A rectangular loop of $N$ closely packed turns is near a long
straight wire as shown below. What is the mutual inductance $M$
for the loop-wire system if $N$=100, $a$=1.0 cm, $b$ = 8.0 cm,
and $\ell$ = 30 cm?
\end{column}
\end{columns}
\end{blockexmplque}
The flux through the loop due to the field $\vec{B}$ of the current $i$ is given by:
\begin{equation*}
\Phi = \int_{S_{loop}} \vec{B} \cdot d\vec{S}
= \int_{a}^{b} B \ell dr
= \int_{a}^{b} \frac{\mu_0 I}{2 \pi r} \ell dr
= \frac{\mu_0 I \ell}{2\pi} \int_{a}^{b} \frac{dr}{r}
= \frac{\mu_0 i \ell}{2\pi} ln(1 + \frac{b}{a})
\end{equation*}
Thus:
\begin{equation*}
M = \frac{N\Phi}{i} \Rightarrow M = \frac{N \mu_0 \ell}{2\pi}
ln(1 + \frac{b}{a}) \Rightarrow
\end{equation*}
\begin{equation*}
M = \frac{(100) (4\pi \times 10^{-7} \; H/m) (0.30 \; m)}{2\pi}
ln(1 + \frac{8.0}{1.0}) = 1.3 \times 10^{-5} \; H
\end{equation*}
\end{frame}
} % \problemslide
%...............................................................................
%
%
%
\begin{frame}{Inductance in a circuit}
Now we will study the behaviour of electrical circuits which contain an element with inductance L
and, in particular, we will study
\begin{itemize}
\item RL circuits,
\item LC circuits and
\item RLC circuits
\end{itemize}
\vspace{0.3cm}
An inductor is represented in circuit diagrams with the following symbol:
\begin{center}
\includegraphics[width=0.25\textwidth]{./images/schematics/inductance_circuit_symbol.png}\\
\end{center}
\vspace{0.3cm}
The thing to remember is that, if there is a change in the current flowing through the inductor,
there will be a voltage developed across the conductor (back EMF) which is given by:
\begin{equation*}
V_{L} = -L \frac{dI}{dt}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{A simple circuit}
First, let’s examine a very simple DC circuit with an EMF and a resistor.\\
\vspace{0.4cm}
\begin{columns}
\begin{column}{0.50\textwidth}
\begin{center}
\begin{circuitikz}
\draw
(0,0) to[battery=$\varepsilon$] (0,2)
to[short, -o] (0.75, 2.0);
\draw[very thick]
(0.78,2.0)--(1.22,2.0);
\draw
(1.25, 2.0) to [short, o-] (2,2)
to[R=$R$, i=$I$] (2,0) -- (0,0);
\end{circuitikz}
\end{center}
\end{column}
\begin{column}{0.50\textwidth}
Kirchoff's voltage rule (the sum of EMFs in a closed loop equals the sum of potential drops):
\begin{equation*}
\sum_{i} \mathcal{E}_i = \sum_{j} I_{j} \cdot R_{j}
\end{equation*}
\end{column}
\end{columns}
\vspace{0.4cm}
Applying Kirchoff's voltage rule for the above circuit we get:
\begin{equation*}
\mathcal{E} = I \cdot R \Rightarrow I = \frac{\mathcal{E}}{R}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{A simple circuit}
\begin{columns}
\begin{column}{0.50\textwidth}
Connecting the EMF:
The current I takes {\bf instantaneously} the value $\mathcal{E}/R$ and remains constant.
\begin{center}
\begin{circuitikz}
\draw
(0,0) to[battery=$\varepsilon$] (0,2)
to[short, -o] (0.75, 2.0);
\draw[very thick]
(0.78,2.0)--(1.22,2.0);
\draw
(1.25, 2.0) to [short, o-] (2,2)
to[R=$R$, i=$I$] (2,0) -- (0,0);
\draw
(1.25, 0) to [short, -o] (1.25,1.56);
\end{circuitikz}
\end{center}
Disconnecting the EMF: the current stops (I=0) instananeously.
\begin{center}
\begin{circuitikz}
\draw
(0,0) to[battery=$\varepsilon$] (0,2)
to[short, -o] (0.75, 2.0);
\draw[very thick]
(1.25,1.59)--(1.25,2.0);
\draw
(1.25, 2.0) to [short, o-] (2,2)
to[R=$R$] (2,0) -- (0,0);
\draw
(1.25, 0) to [short, -o] (1.25,1.56);
\end{circuitikz}
\end{center}
\end{column}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.96\textwidth]{./images/misc/ItR.png}\\
\end{center}
\end{column}
\end{columns}
\vspace{0.4cm}
\end{frame}
%
%
%
\begin{frame}{Adding inductance (The RL circuit)}
What happens if we {\bf add inductance in the circuit?}
Does your physics intuition tells you anything about the behaviour of the RL circuit?
\vspace{0.3cm}
\begin{columns}
\begin{column}{0.60\textwidth}
\begin{center}
\begin{circuitikz} [scale=1.8]
\draw
(0,0) to[battery=$\varepsilon$] (0,2)
to[short, -o] (0.75, 2.0);
\draw[very thick]
(0.78,2.0)--(1.22,2.0);
\draw
(1.25, 2.0) to [short, o-] (2,2)
to[R=$R$, i=$I$] (2,0)
to[L=$L$] (0,0);
\end{circuitikz}
\end{center}
\end{column}
\begin{column}{0.40\textwidth}
{\bf Inductance is a kind of inertia in the circuit}. \\
\vspace{0.2cm}
So it is {\bf no longer possible to just change the current instantaneously}.
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{RL circuit analysis}
Let's study the RL circuit more quantitatively.\\
\vspace{0.2cm}
\begin{columns}