-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathslides_lecture12_main.tex
1071 lines (859 loc) · 28.4 KB
/
slides_lecture12_main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\renewcommand{\prevlecture}{11 }
\renewcommand{\thislecture}{12 }
\renewcommand{\nextlecture}{0 }
%
% Cover page
%
\title[PHYS 201 / Lecture \thislecture]
{
PHYS 201 / Lecture \thislecture\\
{\it Alternating Currents (AC); Resistor, Capacitor and Inductor in an AC circuit; The RLC series AC circuit}\\
}
\input{slides_author.tex}
\begin{frame}[plain]
\titlepage
\end{frame}
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
% Revision of previous lecture
%
\renewcommand{\lecturesummarytitle}{Revision }
\input{slides_lecture11_summary.tex}
%
% Plan for this lecture
%
\begin{frame}{Plan for Lecture \thislecture}
\begin{itemize}
\item Alternating Currents (AC)
\item AC generation: Simple alternator
\item Forced (or driven) oscillations
\begin{itemize}
\item Resistor (R) in an AC circuit
\item Capacitor (C) in an AC circuit
\item Inductor (L) in an AC circuit
\item The RLC series AC circuit
\end{itemize}
\end{itemize}
\end{frame}
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
%
%
\begin{frame}{Alternating Currents (AC)}
So far we studied {\bf Direct Currents (DC)} meaning
\begin{itemize}
\item voltage that maintains constant polarity over time, or
\item current that maintains constant direction over time.
\end{itemize}
\vspace{0.4cm}
{\bf DC is the kind of electricity made by a solar cell or a battery}.\\
\vspace{0.2cm}
Other sources of electricity (most notably rotary electro-mechanical generators)
produce voltages that {\bf alternate their polarity} over time.\\
\vspace{0.4cm}
Either as a voltage switching polarity or as a current switching direction,
this kind of electricity is known as {\bf Alternating Current (AC)}.\\
\vspace{0.4cm}
{\bf AC is the kind of electricity that comes to your home}. \\
Typically in Europe we get a voltage of 220-240 V which alternates its polarity 50 times per second.
\end{frame}
%
%
%
\begin{frame}{Alternating Currents (AC)}
\begin{itemize}
\item In some cases AC holds no practical advantage over DC.
\begin{itemize}
\item For example, in applications where electricity is used
to dissipate energy in the form of heat, the polarity or direction of current is irrelevant.
\end{itemize}
\vspace{0.3cm}
\item However, with AC it is possible to build {\bf long-distance power
distribution systems} that are far {\bf more efficient than DC}
\begin{itemize}
\item AC is used predominately across the world in high power applications.
\end{itemize}
\end{itemize}
\begin{center}
\includegraphics[width=0.70\textwidth]{./images/photos/power_distribution_01.jpg}\\
\end{center}
\noindent\rule{2cm}{0.4pt}\\
{\small
Read the ``{\em War of Currents}'' article in Wikipedia.
}
\end{frame}
%
%
%
\begin{frame}{Alternating Currents (AC)}
Let $\displaystyle \mathcal{E} = \mathcal{E}_0 sin(\omega t)$
be an AC voltage, where $\mathcal{E}_0$ is its magnitude and,
$\omega$ is the angular frequency of the alternating voltage source.\\
\vspace{0.2cm}
\begin{columns}
\begin{column}{0.55\textwidth}
\begin{center}
\includegraphics[width=0.90\textwidth]{./images/schematics/ac.png}\\
\end{center}
\end{column}
\begin{column}{0.45\textwidth}
This voltage will induce a current which, generally, is given by:
\begin{equation*}
I(t) = I_0 sin(\omega t + \phi)
\end{equation*}
where $\phi$ is the phase difference between the AC voltage and AC current.\\
\vspace{0.2cm}
{\small
We will see that in an AC circuit that includes only resistors, the voltage and current have no phase difference ($\phi$ = 0)
but in circuits with capacitors and inductors $\phi$ is generally not 0.\\
}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Phasor diagrams}
\begin{columns}
\begin{column}{0.45\textwidth}
\begin{center}
\includegraphics[width=0.96\textwidth]{./images/schematics/phasor_diagrams.png}\\
\end{center}
\end{column}
\begin{column}{0.55\textwidth}
It is convenient to represent the AC voltage V(t) and the AC current I(t) using {\em ``phasors''}.
A phasor is a vector taken to be rotating counter-clockwisely with constant angular frequency $\omega$.
\begin{itemize}
\item The length of the phasor represents the magnitude of the quantity represented.
\item The angle of the phasor represents its phase.
The usual reference for zero phase is taken to be the positive x-axis.
\end{itemize}
\end{column}
\end{columns}
\vspace{0.4cm}
Assume that the quantity represented is an AC current I:
At time t, the phase is $\omega t$, and the projection of the phasor on the horizontal x axis
is $I_0 cos(\omega t)$, the value of I at time t (I(t)).
\end{frame}
%
%
%
\begin{frame}{AC generation: Simple alternator}
An {\bf alternator} is an electrical generator that converts mechanical energy to
electrical energy in the form of alternating current.
\begin{columns}
\begin{column}{0.45\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/schematics/simple_alternator.png}\\
\end{center}
\end{column}
\begin{column}{0.55\textwidth}
\begin{itemize}
\item A device that {\bf uses Faraday's law}:\\
A conductor moving relative to a magnetic field
develops an electromotive force (EMF) in it.
\vspace{0.2cm}
\item Typically, a {\bf rotating magnet (called the rotor)} turns within a {\bf stationary set of
conductors wound in coils (called the stator)}.
\begin{itemize}
\item the $\vec{B}$ field vector and the surface vector $\vec{S}$ rotate wrt each other.
\end{itemize}
\end{itemize}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{AC generation: Simple alternator}
\begin{columns}
\begin{column}{0.25\textwidth}
\begin{center}
\includegraphics[width=0.95\textwidth]{./images/schematics/simple_alternator.png}\\
\end{center}
\end{column}
\begin{column}{0.75\textwidth}
Let’s call $\omega$ the angular frequency of that rotation.
Assume that at t=0, the $\vec{B}$ and $\vec{S}$ vectors point towards the same direction.
After time t, the opening angle $\phi$ between $\vec{B}$ and $\vec{S}$ will be:
\begin{equation*}
\phi = \omega t
\end{equation*}
\end{column}
\end{columns}
The magnetic flux through the conductor is:
\begin{equation*}
\Phi_B = \int_{S} \vec{B} \cdot d\vec{S} = \vec{B} \cdot \vec{S} = B S cos\phi = B S cos(\omega t)
\xRightarrow{{\Phi_B}_{0} = BS}
{\color{magenta}
\Phi_B = {\Phi_B}_{0} cos(\omega t)
}
\end{equation*}
The rate of change of the flux gives us the EMF:
\begin{equation*}
\mathcal{E} = - \frac{d}{dt} \Phi_B = - \frac{d}{dt} \Big( B S cos(\omega t) \Big) = \omega B S sin(\omega t)
\xRightarrow{\mathcal{E}_0 = \omega B S}
{\color{magenta}
\mathcal{E} = \mathcal{E}_0 sin(\omega t)
}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{AC generation: Simple alternator}
The rotating $\vec{B}$ field {\bf induces an AC voltage} in the stator windings:
\begin{equation*}
\Phi_B = {\Phi_B}_{0} cos(\omega t) \;\;\;\;\; \rightarrow \;\;\;\;\; \mathcal{E} = \mathcal{E}_0 sin(\omega t)
\end{equation*}
\begin{center}
\includegraphics[width=0.80\textwidth]{./images/schematics/simple_alternator_operation.png}\\
\end{center}
Notice that there is a phase of $\pi$/2 between the flux and the voltage:
\begin{itemize}
\item $\displaystyle cos(\omega t) = sin(\omega t + \frac{\pi}{2})$ $\rightarrow$ The flux leads
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Forced (or driven) oscillations}
Before, we studied {\bf undamped LC} and {\bf damped RLC} circuits.
\begin{itemize}
\item They oscillated at angular frequency $\displaystyle \omega_0 = \frac{1}{\sqrt{LC}}$
\item Such oscillations are {\bf free oscillations}
\item $\displaystyle \omega_0$ is the circuit's {\bf natural angular frequency}.
\end{itemize}
\begin{columns}
\begin{column}{0.50\textwidth}
\begin{center}
\begin{circuitikz} [scale=0.8]
\draw
(0,0) to[battery=$\varepsilon$] (0,2) to[short, -o] (0.75, 2.0);
\draw[very thick]
(0.78,2.0)--(1.18,2.3);
\draw
(1.25, 2.0) to [short, o-] (2,2) to[C=$C$] (2,0)--(0,0);
\draw
(2,2)--(4,2) to[L=$L$,i=$I$] (4,0) -- (2,0);
\end{circuitikz}
\end{center}
\end{column}
\begin{column}{0.50\textwidth}
\begin{center}
\begin{circuitikz} [scale=0.8]
\draw
(0,0) to[battery=$\varepsilon$] (0,2) to[short, -o] (0.75, 2.0);
\draw[very thick]
(0.78,2.0)--(1.18,2.3);
\draw
(1.25, 2.0) to [short, o-] (2,2) to[C=$C$] (2,0)--(0,0);
\draw
(2,2) to[R=$R$] (4,2) to[L=$L$,i=$I$] (4,0) -- (2,0);
\end{circuitikz}
\end{center}
\end{column}
\end{columns}
\vspace{0.2cm}
In this lecture we will consider {\bf forced (or driven) oscillations}.\\
\vspace{0.3cm}
{\small
When the RLC circuit is connected to an alternating EMF
$\mathcal{E} = \mathcal{E}_0 sin(\omega t)$, the oscillations of
charge, voltage and current can occur at the driving frequency $\omega$.
}
\end{frame}
%
%
%
\begin{frame}{Resistor, Capacitor and Inductor in an AC circuit}
We will study the {\bf forced (or driven) oscillation} of the RLC circuit.\\
\vspace{0.2cm}
First, we will study the behaviour of different simple AC circuits:\\
\vspace{0.2cm}
\begin{columns}
\begin{column}{0.33\textwidth}
\begin{center}
\begin{circuitikz}
\draw
(0,0) to[sinusoidal voltage source=$\varepsilon$] (0,2) -- (2,2)
to[R=$R$, i=$I$, v=$V_R$] (2,0) -- (0,0);
\end{circuitikz}
{\small \color{magenta} Purely resistive load}
\end{center}
\end{column}
\begin{column}{0.33\textwidth}
\begin{center}
\begin{circuitikz}
\draw
(0,0) to[sinusoidal voltage source=$\varepsilon$] (0,2) -- (2,2)
to[C=$C$, i=$I$, v=$V_C$] (2,0) -- (0,0);
\end{circuitikz}
{\small \color{magenta} Purely capacitive load}
\end{center}
\end{column}
\begin{column}{0.33\textwidth}
\begin{center}
\begin{circuitikz}
\draw
(0,0) to[sinusoidal voltage source=$\varepsilon$] (0,2) -- (2,2)
to[L=$C$, i=$I$, v=$V_L$] (2,0) -- (0,0);
\end{circuitikz}
{\small \color{magenta} Purely inductive load}
\end{center}
\end{column}
\end{columns}
\vspace{0.6cm}
In particular we will study what is the current $I(t)$ and the voltage $V_i(t)$ across the two ends of the
resistor, capacitor and inductor (i = R,L,C) connected in the circuit with an AC voltage
$\displaystyle \mathcal{E} = \mathcal{E}_0 sin(\omega t)$.
\end{frame}
%
%
%
\begin{frame}{Resistor in an AC circuit}
\begin{columns}
\begin{column}{0.35\textwidth}
\begin{center}
\begin{circuitikz}
\draw
(0,0) to[sinusoidal voltage source=$\varepsilon$] (0,2) -- (2,2)
to[R=$R$, i=$I$, v=$V_R$] (2,0) -- (0,0);
\end{circuitikz}
\end{center}
\end{column}
\begin{column}{0.65\textwidth}
$V_R(t)$ is given by Kirchoff's voltage rule:
\begin{equation*}
\mathcal{E}(t) = V_R(t) \Rightarrow
V_R(t) = \mathcal{E}_0 sin(\omega t) \Rightarrow
\end{equation*}
\begin{equation*}
{\color{magenta}
V_R(t) = {V_R}_0 sin(\omega t)
}
\end{equation*}
where ${V_R}_0 = \mathcal{E}_0$.
\end{column}
\end{columns}
\vspace{0.4cm}
The current $I(t)$ is given by:
\begin{equation*}
V_R(t) = I(t) R \Rightarrow I(t) = \frac{V_R(t)}{R} \Rightarrow I(t) = \frac{V_0}{R} sin(\omega t) \Rightarrow
{\color{magenta}
I(t) = I_0 sin(\omega t)
}
\end{equation*}
where $I_0 = {V_R}_0/R$.\\
\end{frame}
%
%
%
\begin{frame}{Resistor in an AC circuit}
\begin{center}
{\scriptsize
\begin{equation*}
{\color{magenta} I(t) = I_0 sin(\omega t) } \; and \;
{\color{magenta} V_R(t) = {V_R}_0 sin(\omega t)} \;
where \; I_0 = \frac{{V_R}_0}{R}, \; and \; {V_R}_0 = \mathcal{E}_0
\end{equation*}
}
{\color{magenta}
{\bf Current and voltage are always in phase.}
}
\end{center}
\begin{columns}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/schematics/ac_resistor_graph.png}\\
\end{center}
\end{column}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/schematics/ac_resistor_phasor.png}\\
\end{center}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Capacitor in an AC circuit}
\begin{columns}
\begin{column}{0.35\textwidth}
\begin{center}
\begin{circuitikz}
\draw
(0,0) to[sinusoidal voltage source=$\varepsilon$] (0,2) -- (2,2)
to[C=$C$, i=$I$, v=$V_C$] (2,0) -- (0,0);
\end{circuitikz}
\end{center}
\end{column}
\begin{column}{0.65\textwidth}
$V_C(t)$ is given by Kirchoff's voltage rule:
\begin{equation*}
\mathcal{E}(t) = V_C(t) \Rightarrow
{\color{magenta}
V_C(t) = {V_C}_0 sin(\omega t)
}
\end{equation*}
where ${V_C}_0 = \mathcal{E}_0$.
\end{column}
\end{columns}
\vspace{0.2cm}
The current $I(t)$ is calculated as follows:
\begin{equation*}
V_C(t) = \frac{Q(t)}{C} \Rightarrow Q(t) = C V_C(t) \Rightarrow Q(t) = C {V_C}_0 sin(\omega t) \xRightarrow{I = dQ/dt}
\end{equation*}
\begin{equation*}
I(t) =\omega C {V_C}_0 cos(\omega t) \Rightarrow
\xRightarrow{cos\theta = sin\Big( \theta + \frac{\pi}{2} \Big)}
{\color{magenta}
I(t) = I_0 sin\Big(\omega t + \frac{\pi}{2} \Big)
}
\end{equation*}
where $\displaystyle I_0 = \omega C {V_C}_0 = \frac{{V_C}_0}{X_C}$.\\
\vspace{0.1cm}
The quantity {\color{magenta}
$\displaystyle X_C = \frac{1}{\omega C}$ is the so-called {\bf capacitive reactance}
}.
\end{frame}
%
%
%
\begin{frame}{Capacitor in an AC circuit}
\begin{center}
{\scriptsize
\begin{equation*}
{\color{magenta} I(t) = I_0 sin \Big(\omega t + \frac{\pi}{2} \Big) } \; and \;
{\color{magenta} V_C(t) = {V_C}_0 sin(\omega t)} \;
where \; I_0 = \frac{{V_C}_0}{X_C}, \; {V_C}_0 = \mathcal{E}_0, \; and \; X_C = \frac{1}{\omega C}
\end{equation*}
}
{\color{magenta}
{\bf Current leads voltage by $\pi/2$.}
}
\end{center}
\begin{columns}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/schematics/ac_capacitor_graph.png}\\
\end{center}
\end{column}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/schematics/ac_capacitor_phasor.png}\\
\end{center}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Inductor in an AC circuit}
\begin{columns}
\begin{column}{0.35\textwidth}
\begin{center}
\begin{circuitikz}
\draw
(0,0) to[sinusoidal voltage source=$\varepsilon$] (0,2) -- (2,2)
to[L=$C$, i=$I$, v=$V_L$] (2,0) -- (0,0);
\end{circuitikz}
\end{center}
\end{column}
\begin{column}{0.65\textwidth}
$V_L(t)$ is given by Kirchoff's voltage rule:
\begin{equation*}
\mathcal{E}(t) - V_L(t) = 0 \Rightarrow
{\color{magenta}
V_L(t) = {V_L}_0 sin(\omega t)
}
\end{equation*}
where ${V_L}_0 = \mathcal{E}_0$.
\end{column}
\end{columns}
\vspace{0.2cm}
The current $I(t)$ is calculated as follows:
\begin{equation*}
V_L(t) = L \frac{dI(t)}{dt} \Rightarrow
I(t) = \frac{1}{L} \int V_L(t) dt \Rightarrow
I(t) =\frac{{V_L}_0}{L} \int sin(\omega t) dt \Rightarrow
\end{equation*}
\begin{equation*}
I(t) =- \frac{{V_L}_0}{\omega L} cos(\omega t)
\xRightarrow{-cos\theta = sin\Big( \theta - \frac{\pi}{2} \Big)}
{\color{magenta}
I(t) = I_0 sin\Big(\omega t - \frac{\pi}{2} \Big)
}
\end{equation*}
where $\displaystyle I_0 =\frac{{V_L}_0}{\omega L} = \frac{{V_L}_0}{X_L}$.\\
\vspace{0.2cm}
The quantity {\color{magenta}
$\displaystyle X_L = \omega L$ is the so-called {\bf inductive reactance}
}.
\end{frame}
%
%
%
\begin{frame}{Inductor in an AC circuit}
\begin{center}
{\scriptsize
\begin{equation*}
{\color{magenta} I(t) = I_0 sin \Big(\omega t - \frac{\pi}{2} \Big) } \; and \;
{\color{magenta} V_L(t) = {V_L}_0 sin(\omega t)} \;
where \; I_0 = \frac{{V_L}_0}{X_L}, \; {V_L}_0 = \mathcal{E}_0 \; and \; X_L = \omega L
\end{equation*}
}
{\color{magenta}
{\bf Voltage leads current by $\pi/2$.}
}
\end{center}
\begin{columns}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.90\textwidth]{./images/schematics/ac_inductor_graph.png}\\
\end{center}
\end{column}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.90\textwidth]{./images/schematics/ac_inductor_phasor.png}\\
\end{center}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Summary: R, L, C elements in an AC circuit}
\begin{columns}
\begin{column}{0.60\textwidth}
\begin{center}
\includegraphics[width=0.85\textwidth]{./images/schematics/reactance_freq_dependence.png}\\
\end{center}
\end{column}
\begin{column}{0.40\textwidth}
{\bf Resistance / Reactance}\\
\vspace{0.2cm}
\begin{itemize}
\item Resistor: R
\item Capacitor: $\displaystyle X_C = \frac{1}{\omega C}$
\item Inductor: $\displaystyle X_L = \omega L$
\end{itemize}
\end{column}
\end{columns}
\begin{itemize}
{\small
\item Capacitance causes poor response to low frequencies.
\item Inductance causes poor response to high frequencies.
\item For an RLC circuit, the response is maximised around some intermediate resonant frequency.
}
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Summary: R, L, C elements in an AC circuit}
\begin{equation*}
{\color{magenta}
V_i(t) = {V_i}_0 sin(\omega t) \;\;\; [i=R,L,C]
\;\;\;\; and \;\;\;\;
I(t) = \frac{{V_i}_0}{ {\color{blue}X}} sin(\omega t + {\color{blue}\phi})
}
\end{equation*}
\setlength{\extrarowheight}{12pt}
\setlength{\arraycolsep}{5pt}
\begin{center}
{
\begin{table}[H]
\begin{tabular}{|c|c|c|c|}
\hline
{\bf Element} & {\bf Resistance/} & {\bf Current} & {\bf Frequency} \\
& {\bf Reactance} & {\bf phase} & {\bf response} \\
\hline
Resistor &
$\displaystyle R$ &
$\displaystyle \phi = 0$ &
DC, AC: all frequencies \\
Capacitor &
$\displaystyle X_C = \frac{1}{\omega C}$ &
$\displaystyle \phi = +\frac{\pi}{2}$ &
no DC, AC: high-pass filter \\
Inductor &
$\displaystyle X_L = \omega L$ &
$\displaystyle \phi = -\frac{\pi}{2}$ &
DC, AC: low-pass filter \\
\hline
\end{tabular}
\end{table}
}
\end{center}
\end{frame}
%
%
%
\begin{frame}{Application: Audio crossover}
{ \scriptsize
Audio crossovers are a class of electronic filter used in audio applications.
Most individual loudspeaker drivers are incapable of covering the entire audio spectrum from low frequencies
to high frequencies with acceptable relative volume and absence of distortion so most hi-fi speaker systems
use a combination of multiple loudspeaker drivers, each catering to a different frequency band.
Crossovers split the audio signal into separate frequency bands that can be separately routed to loudspeakers
optimized for those bands [from Wikipedia].\\
}
\begin{center}
\includegraphics[width=0.70\textwidth]{./images/schematics/crossover_network_in_speaker.jpg}\\
\end{center}
The crossover frequency is determined by $X_L$ = $X_C$
\end{frame}
%
%
%
\begin{frame}{The RLC series AC circuit}
Now are now ready to study a circuit with a resistor, inductor and capacitor connected in series
and connected to an external alternating EMF.\\
\vspace{0.2cm}
\begin{center}
\begin{circuitikz} [scale=1.60]
\draw
(0,0) to[sinusoidal voltage source=$\varepsilon$] (0,2)
to[R=$R$, i=$I$, v=$V_R$] (2,2)
to[L=$L$, i=$I$, v=$V_L$] (2,0)
to[C=$C$, i=$I$, v=$V_C$] (0,0);
\end{circuitikz}
\end{center}
\end{frame}
%
%
%
\begin{frame}{The RLC series AC circuit}
The {\bf current is common}:
\begin{equation*}
I_R(t) = I_L(t) = I_C(t) = I(t)
\end{equation*}
\vspace{0.2cm}
Assume: $\displaystyle I(t) = I_0 sin(\omega t)$.\\
\begin{columns}
\begin{column}{0.40\textwidth}
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/schematics/ac_rlc_phasor_diagram_01.png}\\
\end{center}
\end{column}
\begin{column}{0.60\textwidth}
The voltages across the R, L, C elements can be written as:
\begin{equation*}
V_R(t) = {\color{blue} I_0 R} sin({\color{magenta} \omega t}); \;\;
\end{equation*}
\begin{equation*}
V_L(t) = {\color{blue} I_0 X_L} sin\Big({\color{magenta} \omega t + \frac{\pi}{2} } \Big); \;\;
\end{equation*}
\begin{equation*}
V_C(t) = {\color{blue} I_0 X_C} sin\Big({\color{magenta} \omega t - \frac{\pi}{2} } \Big)
\end{equation*}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{The RLC series AC circuit}
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/schematics/ac_rlc_phasor_diagram_02.png}\\
\end{center}
\end{frame}
%
%
%
\begin{frame}{The RLC series AC circuit}
Kirchoff's voltage rule is valid at all times t as the phasors rotate together:
\begin{equation*}
\mathcal{E}(t) = V_R(t) + V_L(t) + V_C(t)
\end{equation*}
Because the phasors representing the voltages in the inductor and the capacitor have opposite directions
and they are perpendicular to the phasor representing the voltage in the resistor:
\begin{equation*}
\mathcal{E}_0^2 = {V_R}_0^2 + \Big( {V_L}_0 - {V_C}_0 \Big)^2 \Rightarrow
\end{equation*}
\begin{equation*}
\mathcal{E}_0^2 = I_0^2 R^2 + \Big( I_0 X_L - I_0 X_C \Big)^2 = I_0^2 \Big\{ R^2 + \Big( X_L - X_C \Big)^2 \Big\} \Rightarrow
\end{equation*}
\begin{equation*}
I_0 = \frac{\mathcal{E}_0}{\sqrt{R^2 + \Big( X_L - X_C \Big)^2}} =
\frac{\mathcal{E}_0}{\sqrt{R^2 + \Big( \omega L - \frac{1}{\omega C} \Big)^2}} =
\frac{\mathcal{E}_0}{Z}
\end{equation*}
where {\color{magenta} $\displaystyle Z = \sqrt{R^2 + \Big( \omega L - \frac{1}{\omega C} \Big)^2}$}
is the {\bf impedance} of the RLC circuit.\\
\end{frame}
%
%
%
\begin{frame}{The RLC series AC circuit}
The value of $I_0$ depends on the difference between
$\displaystyle \omega L$ and $\displaystyle \frac{1}{\omega C}$
(i.e. the difference between $X_L$ and $X_R$)
\begin{itemize}
\item Doesn't matter which one is greater as the difference is squared.
\end{itemize}
\begin{equation*}
{\color{magenta}
I_0 = \frac{\mathcal{E}_0}{Z} =
\frac{\mathcal{E}_0}{\sqrt{R^2 + \Big( \omega L - \frac{1}{\omega C} \Big)^2}}
}
\end{equation*}
But which one is greater determines the phase $\phi$
by which the voltage leads the current:
\begin{equation*}
tan\phi = \frac{V_L - V_C}{V_R} \Rightarrow {\color{magenta} tan\phi = \frac{X_L - X_C}{R} }
\end{equation*}
\begin{itemize}
\item {\color{magenta} $X_L > X_C$}: The circuit is {\bf more inductive than capacitive}.
\begin{itemize}
\item The current trails behind the voltage (voltage leads).
\end{itemize}
\item {\color{magenta} $X_L < X_C$}: The circuit is {\bf more capacitive then inductive}.
\begin{itemize}
\item The current leads.
\end{itemize}
\item {\color{magenta} $X_L = X_C$}: ?
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{The RLC series AC circuit: Resonance condition}
If $X_L = X_C$, the circuit is {\bf in resonance}.
\begin{columns}
\begin{column}{0.60\textwidth}
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/schematics/ac_rlc_resonance.png}\\
\end{center}
\end{column}
\begin{column}{0.40\textwidth}
At resonance, we have
\begin{itemize}
\item minimum impedance,
\item maximal current, and
\item current in phase with voltage in ($\phi=0$)
\end{itemize}
\end{column}
\end{columns}
\begin{equation*}
X_L = X_C \Rightarrow \omega L - \frac{1}{\omega C} = 0 \Rightarrow \omega = \frac{1}{\sqrt{LC}}
\end{equation*}
The resonance happens when the {\bf driving angular frequency matches the natural angular frequency}.
\end{frame}
%
%
%
\begin{frame}{The RLC series AC circuit: Resonance condition}
Resonant circuits are used to {\bf respond selectively to signals of a given
frequency} while {\bf discriminating against signals of different frequencies}.\\
\vspace{0.2cm}
An example of the application of resonant circuits: selection of AM radio stations.
\begin{columns}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/schematics/am_radio.png}\\
\end{center}
\end{column}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/photos/am_radio.jpg}\\
\end{center}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Power in the RLC series circuit}
\begin{itemize}
\item
Average power dissipated on resistor:
\begin{equation*}
P_{avg} = \frac{1}{T} \int_{0}^{T} V_R(t) I(t) = \frac{1}{2} {V_R}_0 I_0 = {V_R}_{rms} I_{rms} = I_{rms}^2 R = \frac{{V_R}_{rms}^2}{R}
\end{equation*}
\item
The inductor stores and releases energy periodically in the $\vec{B}$ field.
\item
The capacitor stores and releases energy periodically in the $\vec{E}$ field.
\end{itemize}
\vspace{0.2cm}
Average power provided by a generator:
\begin{equation*}
P_{avg} = \frac{1}{2} V_0 I_0 cos\phi = V_{rms} I_{rms} cos\phi
\end{equation*}
\noindent\rule{2cm}{0.4pt}\\
{ \scriptsize
Note that $\displaystyle \int_{0}^{2\pi} sin^2x dx = \frac{1}{2}$ leads to $\displaystyle I_{rms} = \frac{I_0}{\sqrt{2}}$
and $\displaystyle {V_R}_{rms} = \frac{V_0}{\sqrt{2}}$
}
\end{frame}
%
%
%
\begin{frame}{Power in the RLC series circuit}
\begin{center}
\includegraphics[width=0.70\textwidth]{./images/schematics/ac_rlc_power.png}\\
\end{center}