-
Notifications
You must be signed in to change notification settings - Fork 5
/
prompt_flan.py
47 lines (35 loc) · 1.63 KB
/
prompt_flan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# script to prompt FLAN-UL2
from transformers import T5ForConditionalGeneration, AutoTokenizer
import torch
import pandas as pd
import ast
from tqdm import tqdm
import numpy as np
import itertools
from argparse import ArgumentParser
def main():
argparse = ArgumentParser()
argparse.add_argument("--input_data_csv_file", dest='input_data_csv_file', required=True)
argparse.add_argument("--output_data_csv_file", dest='output_data_csv_file', required=True)
argparse.add_argument("--batch_size", dest='bs', default=1, type=int)
args = argparse.parse_args()
print(args)
model = T5ForConditionalGeneration.from_pretrained("google/flan-ul2", torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("google/flan-ul2")
print(">> loaded the model")
input_df = pd.read_csv(args.input_data_csv_file)
prompts = list(input_df['prompt'])
generated_answers = []
with torch.no_grad():
for prompt in tqdm(prompts):
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(inputs, max_length=200)
output = tokenizer.decode(outputs[0])
generated_answers.append(output)
assert len(generated_answers) == len(prompts), "{} processed data, {} data".format(len(generated_answers),
len(prompts))
input_df['generated_answers'] = generated_answers
input_df.to_csv('data/completions/flan_ul2_{}'.format(args.output_data_csv_file),
index=False)
if __name__ == "__main__":
main()