-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneural_ode.py
executable file
·153 lines (118 loc) · 4.39 KB
/
neural_ode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from typing import Optional, List
import numpy as np
import tensorflow as tf
from tensorflow.python.framework.ops import EagerTensor
import tensorflow.contrib.eager as tfe
keras = tf.keras
def zip_map(zipped, update_op):
return [update_op(*elems) for elems in zipped]
def euler_update(h_list, dh_list, dt):
return zip_map(zip(h_list, dh_list), lambda h, dh: h + tf.cast(dt, h.dtype) * dh)
def euler_step(func, dt, state):
return euler_update(state, func(state), dt)
def rk2_step(func, dt, state):
k1 = func(state)
k2 = func(euler_update(state, k1, dt))
return zip_map(zip(state, k1, k2),
lambda h, dk1, dk2: h + tf.cast(dt, h.dtype) * (dk1 + dk2) / 2)
def rk4_step(func, dt, state):
k1 = func(state)
k2 = func(euler_update(state, k1, dt / 2))
k3 = func(euler_update(state, k2, dt / 2))
k4 = func(euler_update(state, k3, dt))
return zip_map(
zip(state, k1, k2, k3, k4),
lambda h, dk1, dk2, dk3, dk4: h + tf.cast(dt, h.dtype) * (
dk1 + 2 * dk2 + 2 * dk3 + dk4) / 6,
)
class NeuralODE:
def __init__(
self, model: tf.keras.Model, t=np.linspace(0, 1, 40),
solver=rk4_step
):
self._t = t
self._model = model
self._solver = solver
self._deltas_t = t[1:] - t[:-1]
def forward(self, inputs: tf.Tensor, return_states: Optional[str] = None):
def _forward_dynamics(_state):
"""Used in solver _state == (time, tensor)"""
return [1.0, self._model(inputs=_state)]
states = []
def _append_state(_state):
tensors = _state[1]
if return_states == "numpy":
states.append(tensors.numpy())
elif return_states == "tf":
states.append(tensors)
with tf.name_scope("forward"):
t0 = tf.cast(self._t[0], dtype=tf.float32)
state = [t0, inputs]
_append_state(state)
for dt in self._deltas_t:
state = self._solver(
func=_forward_dynamics, dt=tf.cast(dt, dtype=tf.float32), state=state
)
_append_state(state)
outputs = state[1]
if return_states:
return outputs, states
return outputs
def _backward_dynamics(self, state):
t = state[0]
ht = state[1]
at = -state[2]
with tf.GradientTape() as g:
g.watch(ht)
ht_new = self._model(inputs=[t, ht])
gradients = g.gradient(
target=ht_new, sources=[ht] + self._model.weights,
output_gradients=at
)
return [1.0, ht_new, *gradients]
def backward(self, outputs: tf.Tensor,
output_gradients: Optional[tf.Tensor] = None):
with tf.name_scope("backward"):
grad_weights = [tf.zeros_like(w) for w in self._model.weights]
t0 = tf.to_float(self._t[-1])
if output_gradients is None:
output_gradients = tf.zeros_like(outputs)
state = [t0, outputs, output_gradients, *grad_weights]
for dt in self._deltas_t[::-1]:
state = self._solver(
self._backward_dynamics, dt=-tf.to_float(dt), state=state
)
inputs = state[1]
dLdInputs = state[2]
dLdWeights = state[3:]
return inputs, dLdInputs, dLdWeights
def forward_odeint(
self,
inputs: tf.Tensor,
rtol=1e-6,
atol=1e-6,
method='dopri5',
return_states: bool = False,
):
"""Do forward with adaptive solver"""
with tf.name_scope("forward_odeint"):
t = tf.to_float(self._t)
if not return_states:
t = tf.to_float([t[0], t[-1]])
outputs, info_dict = tf.contrib.integrate.odeint(
func=lambda _y, _t: self._model(inputs=(_t, _y)),
y0=inputs,
t=t,
rtol=rtol,
atol=atol,
method=method,
full_output=True,
)
if return_states:
return outputs, info_dict
return outputs[-1, ...], info_dict
def defun_neural_ode(node: NeuralODE) -> NeuralODE:
node.forward = tfe.defun(node.forward)
node.backward = tfe.defun(node.backward)
node.forward_odeint = tfe.defun(node.forward_odeint)
return node