-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSEMmisfit.R
654 lines (545 loc) · 23.1 KB
/
SEMmisfit.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
# ================================================================
# Simulation Study for SEM Global Model Fit Tests with HFI
# ================================================================
#
# This script performs a simulation study to evaluate the performance
# of traditional SEM chi-square tests versus nonlinear alternatives.
# The study includes varying sample sizes and multiple misfit types:
required_packages <- c(
"MASS", # For mvrnorm function
"OpenMx", # For SEM modeling
"data.table", # For data manipulation
"foreach", # For parallel processing
"doParallel", # For parallel processing
"ggplot2", # For data visualization
"moments", # For skewness and kurtosis
"goftest", # For goodness-of-fit tests
'energy', # For mvnorm.etest
'infotheo', # For mutinformation
'dHSIC' # For distance‐based Hilbert–Schmidt independence criterion
)
installed_packages <- rownames(installed.packages())
for(pkg in required_packages){ # Install required packages if not already installed
if(!pkg %in% installed_packages){
install.packages(pkg, dependencies = TRUE)
}
library(pkg, character.only = TRUE)
}
# Detect the number of available cores
num_cores <- detectCores() - 1 # Reserve one core for the OS
# Register parallel backend
cl <- makeCluster(num_cores)
registerDoParallel(cl)
# ----------------------------
# Define Simulation Parameters
# ----------------------------
niter <- 1000 # Number of iterations per condition
nboot <- 1000 # Number of bootstrap samples for permutation tests
simconditions <- data.table(expand.grid(
n = c(100,500),
nvars=c(4,8),
misfit_type = c('none', 'classical', 'interaction','nonnormal', 'groupvar','groupmean'),
stringsAsFactors = FALSE
))
simresults <- data.table() # Initialize an empty data.table to store results
# Function to generate signed chi-square distributed variables / cumulative distribution
generate_signed_chisq <- function(n, df = 3) {
X <- matrix(rnorm(n * df), ncol = df) # Generate standard normal variables
rowSums(sign(X) * X^2) # Apply transformation
}
#function to combine multiple p values into one
combine_pvalues <- function(p_values, method = c("Fisher")) {
if(any(is.na(p_values))){
warning('NA values detected in p-values')
p_values <- p_values[!is.na(p_values)]
}
if (length(p_values) == 0) {
warning('No valid p-values detected')
return(NA) # Return NA if no valid p-values
}
if (method %in% c('bf', "bonferroni",'BF','Bonferroni')) {
combined_p <- min(1, length(p_values) * min(p_values))
} else if (method %in% c('Fisher',"fisher")) { # Compute Fisher’s combined test statistic
X2 <- -2 * sum(log(p_values+1e-16)) # Add small value to avoid log(0)
df <- 2 * length(p_values)
combined_p <- pchisq(X2, df = df, lower.tail = FALSE)
}
return(combined_p)
}
discretize_fd <- function(x) {
bin_width <- 2 * IQR(x, na.rm = TRUE) / (length(x)^(1/3)) # Freedman-Diaconis bin width
nbins <- max(2, round((max(x, na.rm = TRUE) - min(x, na.rm = TRUE)) / bin_width)) # Ensure at least 2 bins
return(discretize(x, nbins = nbins))
}
# ----------------------------
# Define the Simulation Function
# ----------------------------
# Function to perform a single simulation iteration
simulate_iteration <- function(cond, iter){
# Extract condition parameters
#cond<-list(n=500, nvars=4, misfit_type='none') ##run from this line to diagnose simulation
n <- cond$n
misfit_type <- cond$misfit_type
nvars <- cond$nvars
out <- data.table()
# -----------------------------------
# Data Generation
# -----------------------------------
data <- data.table(mvrnorm(n, mu = rep(.5, nvars), Sigma = diag(2,nvars)))
data[,V3:= 0 * V1 +
0.3 * V2 +
ifelse('interaction' %in% misfit_type, .5, 0) * (V1 * V2) + # Introduce nonlinearity (if needed) by an interaction term
rnorm(n, mean = 0, sd = 1)
]
if('groupvar' %in% misfit_type) data[1:floor(n/2),c('V2','V3') ] <- data[1:(n/2),c('V2','V3'),with=F ] * 2
if('groupmean' %in% misfit_type) data[1:floor(n/2),c('V2','V3') ] <- data[1:(n/2),c('V2','V3'),with=F ] + 2
if('nonnormal' %in% misfit_type) data[,V4:=log1p(exp(V4))]
# -----------------------------------
# Define the SEM Model
# -----------------------------------
# Define manifest variables
manifests <- paste0('V',1:nvars)
# Specify the SEM path model with fixed covariance between X1 and X2
model <- mxModel("PathModel", #define free covariances except between x1 and x2
type = "RAM",
manifestVars = manifests,
latentVars = NULL,
mxPath(from = "V1", to = "V3", arrows = 2, free = TRUE, values = 0.5, labels = "b1"),
mxPath(from = "V2", to = "V3", arrows = 2, #if there is classical covariance misfit, fix covariance between X2 and X3 to incorrect value
free = ifelse('classical' %in% misfit_type,FALSE,TRUE), values = 0.05, labels = "b2"),
mxPath(from = manifests, arrows = 2, free = T, values = 1),
mxPath(from = 'one', to = manifests),
mxFitFunctionML(rowDiagnostics = TRUE),
mxData(observed = data, type = "raw")
)
# -----------------------------------
# Fit the SEM Model
# -----------------------------------
# Fit the model with error handling
fit <- tryCatch({
suppressMessages(mxRun(model))
}, error = function(e) {
# Return NA for p-values if model fails to run
return('fit error')
})
# Check if model fitting was successful
if(inherits(fit, "MxModel") == FALSE){
return('fit error check')
}
# Check for model convergence
if(fit$output$status$code != 0){
return('non convergence')
}
# -----------------------------------
# Compare with Reference Model
# -----------------------------------
# Generate reference (saturated) models
refs <- tryCatch({
suppressMessages(mxRefModels(fit, run = TRUE))
}, error = function(e){
return('ref model error')
})
# Extract and store the SEM chi-square test p-value
out$SEM_p <- mxCompare(refs[[1]], fit)$p[2]
# -----------------------------------
# Extract Residuals and Perform Misfit Tests
# -----------------------------------
# Extract residuals
expMean = c(attributes(fit$output$algebras$PathModel.fitfunction)$expMean)
expCov <- attributes(fit$output$algebras$PathModel.fitfunction)$expCov
residuals <- t(apply(data, 1, function(row) row - expMean))
# # Extract row-wise sum of squared standardized residuals
# stdresidualsrowsumsq <- attributes(fit$output$algebras$PathModel.fitfunction)$rowDist
# compute conditional predictions and residuals
stdcondresiduals <- matrix(NA, nrow = nrow(data), ncol = nvars)
condpredictions <- condresiduals <- matrix(NA, nrow = nrow(data), ncol = nvars)
for (j in 1:nvars) {
# Partition covariance matrix
Sigma_jj <- expCov[j, j, drop=TRUE] # Extract variance of X_j (scalar)
Sigma_j_rest <- expCov[j, -j, drop=FALSE] # Extract row vector (1 × (p-1))
Sigma_rest_rest <- expCov[-j, -j, drop=FALSE] # Extract covariance matrix ((p-1) × (p-1))
# Invert the covariance matrix of remaining variables
Sigma_inv <- solve(Sigma_rest_rest) # Inverse of (p-1) × (p-1) matrix
# Compute conditional variance (scalar)
cond_var <- Sigma_jj - Sigma_j_rest %*% Sigma_inv %*% t(Sigma_j_rest)
# Compute conditional mean of X_j given all other variables
X_rest <- data[, colnames(data)[-j], with=FALSE] # Extract all variables except X_j
condpredictions[,j] <- expMean[j] + as.vector(Sigma_j_rest %*% Sigma_inv %*% t(X_rest - expMean[-j])) # Convert to vector
# Compute residuals
condresiduals[, j] <- (data[[ colnames(data)[j]]] - condpredictions[,j])
stdcondresiduals[, j] <- condresiduals[, j] / c(sqrt(cond_var))
}
stdresiduals <- {
# 1) Center the columns by the implied means
# 2) Apply the inverse Cholesky factor to "whiten" them
t(
solve(
chol(expCov),
t( sweep(as.matrix(data), 2, expMean, FUN = "-") )
)
)
}
# print(cor(stdresiduals))
stdresidualsrowsumsq <- apply(stdresiduals,1,function(x) sum((x^2)))
stdresidualsrowsumsqsigned <- apply(stdresiduals,1,function(x) sum((x^2)*sign(x)))
##manually compute squared standardized residuals rowsum using expectations
# stdresiduals <- apply(residuals,1,function(x) x %*% solve(expCov) %*% x)
df <- length(manifests) # Degrees of freedom for ks chi-square test (number of observed variables)
# Perform tests of std residuals against chi-square distribution
out$AD_p <- ad.test(stdresidualsrowsumsq, 'pchisq', df = df)$p.value
# out$ADcondsigned_p <- ad.test(stdresidualsrowsumsqsigned, null = function(x) ecdf(generate_signed_chisq(100000,df))(x))$p.value
# out$ADboot_p <- {
# adfunc <- function(x) ad.test(apply(x,1,function(xx) sum(xx^2)), 'pchisq', df = df)$statistic
# observed_ad_stat <- adfunc(stdresiduals) # Compute observed AD test statistic
# # Generate null distribution by shuffling within rows
# null_ad_stats <- replicate(nboot, {
# shuffled_residuals <- matrix(sample(c(stdresiduals)),n,nvars) # Shuffle within each row
# adfunc(shuffled_residuals) # Compute new ad statistic on shuffled residuals
# })
# # Compute empirical p-value
# mean(null_ad_stats >= observed_ad_stat)
# }
#
# out$CVM_p <-cvm.test(stdresidualsrowsumsq, 'pchisq', df = df)$p.value
#
# out$KS_p <- ks.test(stdresidualsrowsumsq, 'pchisq', df = df)$p.value
#
out$ADuni_p <- {
adtestp <- c()
for(vari in 1:nvars){
adtestp <- c(adtestp, ad.test(stdresiduals[,vari], 'pnorm',0,1)$p.value)
}
combine_pvalues(adtestp) #fisher/ bonferroni correction
}
#
# out$univarADcondStacked_p <- {
# adtest <- c()
# stackedstdcondresiduals<-c()
# for(vari in 1:nvars){
# stackedstdcondresiduals <- c(
# stackedstdcondresiduals,
# stdresiduals[, vari]
# )
# }
# ad.test(stackedstdcondresiduals, 'pnorm',0,1)$p.value
# }
# out$MVnorm_p <- mvnorm.etest(residuals,nboot)$p.value
out$MVnormE_p <- mvnorm.etest(stdresiduals,nboot)$p.value
out$dcov_p <- { # Test pairwise independence among whitened residuals
pout <- c()
for (i in 1:(nvars-1)) {
for (j in (i+1):nvars) {
pout <- c(pout,
dcov.test(stdresiduals[, i],
stdresiduals[, j],R=nboot)$p.value)
}
}
combine_pvalues(pout)
}
# #Julian
# out$dcovpred_p <- { # Test pairwise independence among predictions and errors
# pout <- c()
# for (i in 1:nvars) {
# for (j in 1:nvars) {
# pout <- c(pout,
# dcov.test(condpredictions[, i],
# condresiduals[, j],R=nboot)$p.value)
# }
# }
# combine_pvalues(pout)
# }
out$dHSIC_p <- { # Test pairwise independence among columns
# pout <- c()
# for (i in 1:(nvars-1)) {
# for (j in (i+1):nvars) {
# pout <- c(pout,
# dhsic.test(stdresiduals[, i],
# stdresiduals[, j])$p.value)
# }
# }
dhsic.test(stdresiduals,matrix.input=T)$p.value #,method='gamma'
# combine_pvalues(pout)
}
out$dHSICbiv_p <- { # Test pairwise independence among columns
pout <- c()
for (i in 1:(nvars-1)) {
for (j in (i+1):nvars) {
pout <- c(pout,
dhsic.test(stdresiduals[, i],
stdresiduals[, j],method='gamma')$p.value)
}
}
combine_pvalues(pout)
}
# # Levene’s test for heteroscedasticity in residual variance
# Levene_p <- {
# levenetest <- c()
# for(vari in 1:nvars){
# # Grouping continuous predictors into quantiles
# group_var <- cut(residuals[, vari], breaks = 3)
# levenetest <- c(levenetest, leveneTest(stdresidualsrowsumsq ~ group_var)$"Pr(>F)"[1])
# }
# min(levenetest) * nvars # Bonferroni correction
# }
# Mutual Information test for nonlinear dependencies
out$MIagg_p <- {
mi_results <- c()
p_values <- c()
for (vari in 1:nvars) {
stdcondresidualsrowsumrest <- apply(stdresiduals[, -vari,drop=F],1,function(x) sum((x)))
discCondResiduals <- discretize(stdresiduals[, vari])
# Compute observed MI
observed_mi <- mutinformation(discretize(stdcondresidualsrowsumrest), discCondResiduals)
# Generate null distribution by permuting R
permuted_mis <- replicate(nboot, {
mutinformation(discretize(sample(stdcondresidualsrowsumrest)), discCondResiduals)
})
# Compute p-value: Proportion of permuted MIs greater than or equal to observed MI
p_values <- c(p_values, mean(permuted_mis >= observed_mi))
}
# Apply correction for multiple comparisons
combine_pvalues(p_values)
}
# out$MutInfoCondRest2_p <- {
# mi_results <- c()
# p_values <- c()
# for (vari in 1:nvars) {
# stdcondresidualsrowsumrest <- apply(stdresiduals[, -vari,drop=F],1,function(x) sum((x^2)*sign(x)))
# discCondResiduals <- discretize(stdresiduals[, vari]^2*sign(stdresiduals[, vari]))
# # Compute observed MI
# observed_mi <- mutinformation(discretize(stdcondresidualsrowsumrest), discCondResiduals)
# # Generate null distribution by permuting R
# permuted_mis <- replicate(nboot, {
# mutinformation(discretize(sample(stdcondresidualsrowsumrest)), discCondResiduals)
# })
# # Compute p-value: Proportion of permuted MIs greater than or equal to observed MI
# p_values <- c(p_values, mean(permuted_mis >= observed_mi))
# }
# # Apply correction for multiple comparisons
# combine_pvalues(p_values)
# }
# out$MutInfoCondRest2abs_p <- {
# mi_results <- c()
# p_values <- c()
# for (vari in 1:nvars) {
# stdcondresidualsrowsumrest <- apply(stdresiduals[, -vari,drop=F],1,function(x) sum((x^2)))
# discCondResiduals <- discretize(stdresiduals[, vari]^2)
# # Compute observed MI
# observed_mi <- mutinformation(discretize(stdcondresidualsrowsumrest), discCondResiduals)
# # Generate null distribution by permuting R
# permuted_mis <- replicate(nboot, {
# mutinformation(discretize(sample(stdcondresidualsrowsumrest)), discCondResiduals)
# })
# # Compute p-value: Proportion of permuted MIs greater than or equal to observed MI
# p_values <- c(p_values, mean(permuted_mis >= observed_mi))
# }
# # Apply correction for multiple comparisons
# combine_pvalues(p_values)
# }
# out$MutInfoCondRest2absShuffle_p <- {
# mi_results <- c()
# p_values <- c()
# for (vari in 1:nvars) {
# stdcondresidualsrowsumrest <- apply(stdresiduals[, -vari,drop=F],1,function(x) sum((x^2)))
# discCondResiduals <- discretize(stdresiduals[, vari])
# # Compute observed MI
# observed_mi <- mutinformation(discretize(stdcondresidualsrowsumrest), discCondResiduals)
# # Generate null distribution by permuting R
# permuted_mis <- replicate(nboot, {
# mutinformation(
# discretize(sample(apply(matrix(sample(c(stdresiduals[, -vari]),replace=FALSE),n,nvars-1),1,function(x) sum((x^2))))),
# discCondResiduals)
# })
# # Compute p-value: Proportion of permuted MIs greater than or equal to observed MI
# p_values <- c(p_values, mean(permuted_mis >= observed_mi))
# }
# # Apply correction for multiple comparisons
# combine_pvalues(p_values)
# }
# out$MutInfoCondRest2absShuffle2_p <- {
# mi_results <- c()
# p_values <- c()
# for (vari in 1:nvars) {
# stdcondresidualsrowsumrest <- apply(stdresiduals[, -vari,drop=F],1,function(x) sum((x^2)))
# discCondResiduals <- discretize(stdresiduals[, vari]^2)
# # Compute observed MI
# observed_mi <- mutinformation(discretize(stdcondresidualsrowsumrest), discCondResiduals)
# # Generate null distribution by permuting R
# permuted_mis <- replicate(nboot, {
# mutinformation(
# discretize(sample(apply(matrix(sample(c(stdresiduals[, -vari]),replace=FALSE),n,nvars-1),1,function(x) sum((x^2))))),
# discCondResiduals)
# })
# # Compute p-value: Proportion of permuted MIs greater than or equal to observed MI
# p_values <- c(p_values, mean(permuted_mis >= observed_mi))
# }
# # Apply correction for multiple comparisons
# combine_pvalues(p_values)
# }
out$MIbiv_p <- {
mi_results <- c()
p_values <- c()
for (var1 in 1:(nvars-1)) { # Iterate over first variable in pair
for (var2 in (var1+1):nvars) { # Iterate over second variable in pair
# Extract conditional residuals for the two variables
discRes1 <- discretize(stdresiduals[, var1])
discRes2 <- discretize(stdresiduals[, var2])
# Compute observed MI
observed_mi <- mutinformation(discRes1, discRes2)
# Generate null distribution by permuting one variable independently
permuted_mis <- replicate(nboot, {
shuffled_res <- discretize(sample(stdresiduals[, var2]))
mutinformation(discRes1, shuffled_res)
})
# Compute p-value: Proportion of permuted MIs greater than or equal to observed MI
p_values <- c(p_values, mean(permuted_mis >= observed_mi))
}
}
combine_pvalues(p_values)
}
# p <- c()
# for(i in 1:100){
# stdresiduals <- mvrnorm(n, mu = rep(0, nvars), Sigma = diag(1,nvars))
#
# out$MutInfoCondRestStacked_p <- {
# mi_results <- c()
# p_values <- c()
# stackedstdcondresidualsrowsumrest<-c()
# stackedCondResiduals<-c()
# for (vari in 1:nvars) {
# stackedstdcondresidualsrowsumrest <- c(
# stackedstdcondresidualsrowsumrest,
# apply(stdresiduals[, -vari,drop=F],1,function(x) sum((x^2)*sign(x)))
# )
# stackedCondResiduals <- c(
# stackedCondResiduals,
# stdresiduals[, vari]
# )
# }
# nbins <- (n)^(1/3)
# discStackedCondResiduals <- discretize(stackedCondResiduals,nbins=nbins)
# # Compute observed MI
# observed_mi <- mutinformation(discretize(stackedstdcondresidualsrowsumrest,nbins=nbins), discStackedCondResiduals)
# # Generate null distribution by permuting R
# permuted_mis <- replicate(nboot, {
# mutinformation(discretize(sample(stackedstdcondresidualsrowsumrest),nbins=nbins),
# discStackedCondResiduals)
# })
# # Compute p-value: Proportion of permuted MIs greater than or equal to observed MI
# p_value<- mean(permuted_mis >= observed_mi)
# }
# p <- c(p,p_value)
# }
# print(mean(p<.05))
# -----------------------------------
# Compute Heteroscedasticity Fit Index (HFI)
# -----------------------------------
compute_HFI <- function(residuals) {
n <- length(residuals)
# Compute sums of squares and fourth powers
sum_e2 <- sum(residuals^2) # Sum of squared residuals (scalar)
sum_e4 <- sum(residuals^4) # Sum of residuals to the fourth power (scalar)
# Avoid division by zero (small or zero residual variance)
if (sum_e2 == 0) {
return(1) # Perfect fit: no residual variance
}
# Compute heteroscedasticity measure (h_het)
h_het <- sqrt(n / 24) * (
((1/n) * sum_e4) /
((1/(n) * sum_e2)^2) -
3)
# Adjust h_het to compute HFI
if (h_het <= 0) {
return(1) # Homoscedastic case
} else {
a <- 0.032 # Scaling factorp
return((1 / (a * h_het + 1))-.9) # HFI output less than .05 = significant, -.9 was added by me.
}
}
# out$HFIunstd=compute_HFI(residuals)
out$HFI_p=compute_HFI(stdresiduals)
# Return p-values and HFI
return(out)
}
# ----------------------------
# Run Simulations in Parallel
# ----------------------------
# Use foreach to iterate over each simulation condition
# Outer loop iterates over conditions
# Inner loop iterates over iterations within each condition
simresultslist <- foreach(cond_idx = 1:nrow(simconditions), #.combine = rbind,
.packages = c("OpenMx", "MASS", "data.table", "moments", "goftest",'energy', 'infotheo','dHSIC')) %:%
foreach(iter = 1:niter, .packages = c("OpenMx", "MASS", "data.table", "moments")) %dopar% {
# Extract current condition
cond <- simconditions[cond_idx]
# Perform simulation iteration
data.table(condition = cond_idx,
n = cond$n,
nvars=cond$nvars,
misfit_type = cond$misfit_type,
simulate_iteration(cond, iter)
)
}
simresultslist <- unlist(simresultslist, recursive = FALSE)
outlength = unlist(lapply(simresultslist, length))
if(any(outlength != max(outlength))){
warning('errors occurred for some iterations')
print(simresultslist[which(outlength != max(outlength))])
simresultslist <- simresultslist[which(outlength == max(outlength))]
}
simresults <- rbindlist(simresultslist)
# Shut down the parallel cluster
stopCluster(cl)
registerDoSEQ()
# ----------------------------
# Analyze and Summarize Results
# ----------------------------
conditioncols <- c('condition','n','nvars','misfit_type')
# Summary statistics for each condition
outputstatnames <- colnames(simresults)[!colnames(simresults) %in% conditioncols]
# simresults[, All_p := apply(.SD, 1, function(x) combine_pvalues(as.numeric(x))), by = conditioncols, .SDcols = outputstatnames]
# simresults[, Indpndt_p := apply(.SD, 1, function(x) combine_pvalues(as.numeric(x))), by = conditioncols, .SDcols = outputstatnames[grepl('(SEM)|(dcov)|(AD\\_p)',outputstatnames)]]
# outputstatnames <- c(outputstatnames,'Indpndt_p')
summarynames <- gsub('_p','',outputstatnames) #remove _p from names
summary_results <- simresults[, lapply(.SD, function(x) round(mean(x <.05, na.rm = TRUE), 3)), by = conditioncols, .SDcols = outputstatnames]
# Print summary results
print(summary_results)
## Optionally, save the results to CSV files
# fwrite(simresults, "SEM_Simulation_Results.csv")
# fwrite(summary_results, "SEM_Simulation_Summary.csv")
# ----------------------------
# Visualization
# ----------------------------
summary_long <- melt(
summary_results,
id.vars = c("condition", colnames(simconditions)),
measure.vars = colnames(summary_results)[!colnames(summary_results) %in% c("condition",'n','misfit_type','nvars')],
variable.name = "misfit_metric",
value.name = "misfit_rate"
)
summary_long[,Misfit:=misfit_type]
summary_long[,misfit_metric:=gsub('_p','',misfit_metric)]
summary_long[,n:=factor(n)]
# Plot misfit rates for SEM chi-square test, Raw KS test, and HFI across conditions
p <- ggplot(
summary_long,#[grepl('(MV)|(HFI)|(HSIC)|(SEM)|(dcov)|(AD)|(MI)',misfit_metric),],#[!misfit_metric %in% c('KS','CVM','Levene'),],
aes(x = misfit_metric, y = misfit_rate, fill = misfit_metric)) +
geom_bar(stat = "identity", position = position_dodge(width = 0.9)) +
facet_grid(rows = vars(Misfit),cols=vars(interaction(nvars,n)),labeller = label_both) +
labs(
# x = "Sample Size (n)",
y = "Proportion of p-values ≤ 0.05",
fill = "Misfit Metric"
) +
theme_bw() +
geom_hline(yintercept = 0.05, linetype = "dashed", color = "black") +
theme(legend.position = "bottom", axis.text.x = element_text(angle = 45, hjust = 1))
print(p)
if(T){
pdf('sim.pdf', width = 10, height = 12)
print(p)
dev.off()
}
# ================================================================
# End of Simulation Study Script
# ================================================================