forked from pytorch/benchmark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path__init__.py
205 lines (160 loc) · 7.62 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import argparse
import random
import torch
import numpy as np
from torchbenchmark.util.env_check import set_random_seed
from .bert_pytorch import parse_args
from .bert_pytorch.trainer import BERTTrainer
from .bert_pytorch.dataset import BERTDataset, WordVocab
from .bert_pytorch.model import BERT
from torch.utils.data import DataLoader
import typing
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
from pathlib import Path
from ...util.model import BenchmarkModel
from torchbenchmark.tasks import NLP
import io
class CorpusGenerator(io.TextIOBase):
"""
Class to Generate Random Corpus in Lieu of Using Fixed File Data.
Model is written to consume large fixed corpus but for purposes
of benchmark its sufficient to generate nonsense corpus with
similar distribution.
Corpus is sentence pairs. Vocabulary words are simply numbers and
sentences are each 1-4 words.
Deriving from TextUIBase allows object to participate as a text
file.
"""
def __init__(self, words, lines):
self.lines_read = 0
self.lines = lines
self.words = words
def reset(self):
self.lines_read = 0
def readable(self):
return self.lines <= self.lines_read
def readline(self):
self.lines_read = self.lines_read + 1
if (self.lines_read > self.lines):
return ""
newline = ""
for j in range(random.randrange(1,4)):
newline += str(random.randrange(self.words)) + " "
newline += "\\t "
for j in range(random.randrange(1,4)):
newline += str(random.randrange(self.words)) + " "
newline += "\n"
#print(newline)
return newline
class Model(BenchmarkModel):
task = NLP.LANGUAGE_MODELING
DEFAULT_TRAIN_BSIZE = 16
DEFAULT_EVAL_BSIZE = 16
def __init__(self, test, device, batch_size=None, extra_args=[]):
if device == "cpu":
self.DEFAULT_EVAL_BSIZE = max(1, int(self.DEFAULT_EVAL_BSIZE / 8))
super().__init__(test=test, device=device, batch_size=batch_size, extra_args=extra_args)
debug_print = False
root = str(Path(__file__).parent)
args = parse_args(args=[
'--train_dataset', f'{root}/data/corpus.small',
'--test_dataset', f'{root}/data/corpus.small',
'--vocab_path', f'{root}/data/vocab.small',
'--output_path', 'bert.model',
]) # Avoid reading sys.argv here
args.device = self.device
args.script = False
args.on_memory = True
# Example effect of batch size on eval time(ms)
# bs cpu cuda
# 1 330 15.5
# 2 660 15.5
# 4 1200 15.2
# 8 2200 20
# 16 4350 33
# 32 8000 58
#
# Issue is that with small batch sizes the gpu is starved for work.
# Ideally doubling work would double execution time.
# parameters for work size, these were chosen to provide a profile
# that matches processing of an original trained en-de corpus.
args.batch_size = self.batch_size
vocab_size = 20000
args.corpus_lines = 50000
# generate random corpus from parameters
set_random_seed()
vocab = WordVocab(CorpusGenerator(vocab_size, args.corpus_lines))
#with open(args.train_dataset, "r", encoding="utf-8") as f:
# vocab = WordVocab(f)
#vocab = WordVocab.load_vocab(args.vocab_path)
if debug_print:
print("seq_len:")
print(args.seq_len)
print("batch size:")
print(args.batch_size)
print("layers")
print(args.layers)
print("args hidden:")
print(args.hidden)
print("len vocab:")
print(len(vocab))
print(type(vocab))
set_random_seed()
train_dataset = BERTDataset(args.train_dataset, vocab, seq_len=args.seq_len,
corpus_lines=args.corpus_lines, on_memory=args.on_memory, generator = CorpusGenerator(vocab_size, args.corpus_lines))
set_random_seed()
test_dataset = BERTDataset(args.test_dataset, vocab, seq_len=args.seq_len, on_memory=args.on_memory, generator = CorpusGenerator(vocab_size, args.corpus_lines)) \
if args.test_dataset is not None else None
set_random_seed()
train_data_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers)
test_data_loader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.num_workers) \
if test_dataset is not None else None
bert = BERT(len(vocab), hidden=args.hidden, n_layers=args.layers, attn_heads=args.attn_heads)
trainer = BERTTrainer(bert, len(vocab), train_dataloader=train_data_loader, test_dataloader=test_data_loader,
lr=args.lr, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay,
device=args.device, device_ids=args.device_ids, log_freq=args.log_freq, debug=args.debug)
if test == "eval":
bert.eval()
example_batch = next(iter(train_data_loader))
self.example_inputs = example_batch['bert_input'].to(self.device)[:self.batch_size], example_batch['segment_label'].to(self.device)[:self.batch_size]
self.is_next = example_batch['is_next'].to(self.device)[:self.batch_size]
self.bert_label = example_batch['bert_label'].to(self.device)[:self.batch_size]
self.model = trainer
def get_module(self):
return self.model.bert, self.example_inputs
def set_module(self, new_model):
self.model.bert = new_model
def eval(self) -> typing.Tuple[torch.Tensor]:
model = self.model
# 1. forward the next_sentence_prediction and masked_lm model
next_sent_output, mask_lm_output = model.model.forward(*self.example_inputs)
# 2-1. NLL(negative log likelihood) loss of is_next classification result
# 2-2. NLLLoss of predicting masked token word
# 2-3. Adding next_loss and mask_loss : 3.4 Pre-training Procedure
next_loss = model.criterion(next_sent_output, self.is_next)
mask_loss = model.criterion(mask_lm_output.transpose(1, 2), self.bert_label)
loss = next_loss + mask_loss
return (next_sent_output, mask_lm_output)
def train(self):
trainer = self.model
# 1. forward the next_sentence_prediction and masked_lm model
next_sent_output, mask_lm_output = trainer.model.forward(*self.example_inputs)
# 2-1. NLL(negative log likelihood) loss of is_next classification result
# 2-2. NLLLoss of predicting masked token word
# 2-3. Adding next_loss and mask_loss : 3.4 Pre-training Procedure
next_loss = trainer.criterion(next_sent_output, self.is_next)
mask_loss = trainer.criterion(mask_lm_output.transpose(1, 2), self.bert_label)
loss = next_loss + mask_loss
# 3. backward and optimization only in train
trainer.optim_schedule.zero_grad()
loss.backward()
trainer.optim_schedule.step_and_update_lr()
# self.model is a Trainer that has an inner optimizer wrapped by a scheduled optimizer. Return the inner,
# since the scheduled is derived.
def get_optimizer(self):
return self.model.get_optimizer()
# self.model is a Trainer that has an inner optimizer wrapped by a scheduled optimizer. Update both with
# a new inner optimizer.
def set_optimizer(self, optimizer: torch.optim.Optimizer) -> None:
self.model.set_optimizer(optimizer)