-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval.py
executable file
·386 lines (326 loc) · 14.8 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import torch
import torch.nn as nn
import os
import numpy as np
import matplotlib.pyplot as plt
from utils import tensor2im, PSNR, save_image_collections, save_to_json
from pytorch_msssim import ms_ssim, ssim
from pytorch_fid.fid_score import calculate_fid_given_paths
import lpips
import loader
import config
import models.autoencoders as ae
from models.bfcnn import BF_CNN
parser = config.get_common_parser()
parser.add_argument('--jscc_model_path', '-jmp', type=str, default=None, help='model path')
parser.add_argument('--bfcnn_model_path', '-bmp', type=str, default=None, help='model path')
parser.add_argument('--loss_type', type=str, default='l2', help='l2|l1 default=l2')
parser.add_argument('--num_iter', '-ni', type=int, default=100, help="Number of SEC iterations.")
parser.add_argument('--save_images', action='store_true', help='Save output images')
parser.add_argument('--max_batch', '-mb', type=int, default=100, help='Number of maximum batch')
parser.add_argument('--img_prefix',type=str, default="", help='Saved images prefix')
parser.add_argument('--save_json', action='store_true', help='Save JSON file')
parser.add_argument('--json_file_path',type=str, default="", help='path for JSON file')
parser.add_argument('--snr_train', '-st', type=int, default=0, help="Trained SNR")
parser.add_argument('--output_dir', '-od', type=str, default='./outputs', help='output directory')
parser.add_argument('--no_denoiser', action='store_true', help='Do not use denoiser')
parser.add_argument('--alpha', '-al', type=float, default=0.0, help='modified MAP parameter')
parser.add_argument('--delta', '-de', type=float, default=1.5, help='delta')
parser.add_argument('--stop_ratio', '-sr', type=float, default=0.0, help='Stopping Criterion')
parser.add_argument('--num_experiment', '-ne', type=int, default=10, help="Number of experiment")
parser.add_argument('--distribution', '-dist', type=str, default='Gaussian', help='Noise distribution. |Gaussian (default)|Laplace|')
args = parser.parse_args()
if args.debug:
args.print_freq = 1
args.display_freq = 1
dev = "cuda:{}".format(args.gpu) if args.gpu>=0 else "cpu"
device = torch.device(dev)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
test_dataloader = loader.get_test_dataloader(args)
image_range=(-1, 1)
print(len(test_dataloader))
if args.loss_type == 'l2':
criterion = nn.MSELoss(reduction='sum')
elif args.loss_type == 'l1':
criterion = nn.L1Loss(reduction='sum')
else:
raise NotImplementedError()
loss_fn_vgg = lpips.LPIPS(net='vgg').to(device)
def print_update(i,
t,
scaled_denoiser_sqnorm,
obj,
B,
outputs,
inputs,
psnr_orig,
msssim_orig,
avg_psnr,
avg_msssim,
lpips_orig=None,
avg_lpips=None,
last_iter=False):
with torch.no_grad():
lpips = loss_fn_vgg(outputs, inputs).mean()
inputs_255 = tensor2im(inputs, *image_range, 'torch')
psnr = PSNR(reduction='sum')(outputs, inputs, *image_range, offset=0)
try:
msssim = ms_ssim(tensor2im(outputs, *image_range,'torch'),
inputs_255, data_range=255, size_average=True)
label = "MS-SSIM"
except AssertionError:
msssim = ssim(tensor2im(outputs, *image_range, 'torch'),
inputs_255, data_range=255, size_average=True)
label = "SSIM"
if last_iter:
avg_psnr += psnr
avg_msssim += msssim
avg_lpips += lpips
message = "[{:4d}, {:4d}] sigma_t^2: {:.4f} Obj: {:.4f} PSNR: {:.2f} PSNR Orig: {:.2f} {}: {:.4f} {} Orig: {:.4f}".format(
i+1, t+1, scaled_denoiser_sqnorm.item(), obj.item(), psnr / B, psnr_orig / B, label, msssim, label, msssim_orig)
message += " LPIPS: {:.4f} LPIPS Orig: {:.4f}".format(lpips, lpips_orig)
print(message)
return avg_psnr, avg_msssim, avg_lpips
def print_avg(i,
count,
avg_psnr,
avg_psnr_orig,
avg_msssim,
avg_msssim_orig,
avg_lpips,
avg_lpips_orig):
stats = {'PSNR': avg_psnr.item()/count,
'PSNR Orig': avg_psnr_orig.item()/count,
'PSNR Gain': (avg_psnr - avg_psnr_orig).item()/count,
'MS SSIM': avg_msssim.item()/i,
'MS SSIM Orig': avg_msssim_orig.item()/i,
'MS SSIM Gain': (avg_msssim - avg_msssim_orig).item()/i,
'lpips': avg_lpips.item()/i,
'lpips Orig': avg_lpips_orig.item()/i,
'lpips Gain': (-avg_lpips + avg_lpips_orig).item()/i,
}
message = '[{:4d}] Average'.format(i)
for name, val in stats.items():
message += " - {}: {:.4f}".format(name, val)
print(message)
return stats
def test_latent(net, stddev=0., saved_dir=None, writer=None, epoch=0):
net.eval()
avg_psnr_orig = 0.
avg_psnr = 0.
avg_msssim_orig = 0.
avg_msssim = 0.
avg_lpips_orig = 0.
avg_lpips = 0.
avg_fid = 0.
avg_fid_orig = 0.
count = 0.
base_var = 10**(-0.1*args.snr_train)
print(args.distribution)
if args.distribution == 'Gaussian' or args.distribution == 'Fading':
dist = torch.distributions.normal.Normal(0.0, stddev)
elif args.distribution == 'Laplace':
dist = torch.distributions.laplace.Laplace(0.0, stddev/np.sqrt(2))
else:
raise NotImplementedError()
decoder = net.decoder
L = args.num_experiment
psnr_vals = np.zeros(L)
psnr_orig_vals = np.zeros(L)
ssim_vals = np.zeros(L)
ssim_orig_vals = np.zeros(L)
lpips_vals = np.zeros(L)
lpips_orig_vals = np.zeros(L)
fid_vals = np.zeros(L)
fid_orig_vals = np.zeros(L)
for e in range(L):
for i, data in enumerate(test_dataloader):
if i==args.max_batch:
break
with torch.no_grad():
# Sample Test Image
inputs = data[0].to(device)
B,C,H,W = inputs.size()
# Encode
codeword = net.encoder(inputs)
_,zC,zH,zW = codeword.size()
# Corrupted codeword
noise = dist.sample(codeword.size()).to(device)
if args.distribution == 'Fading':
h = torch.randn(B, 1, 1, 1)
codeword = h * codeword
y = codeword + noise
# One-shot Decoding
outputs = decoder(y)
psnr_orig = PSNR(reduction='sum')(outputs, inputs, *image_range, offset=0)
inputs_255 = tensor2im(inputs, *image_range, 'torch')
try:
msssim_orig = ms_ssim(tensor2im(outputs, *image_range, 'torch'),
inputs_255, data_range=255, size_average=True)
label = "MS-SSIM"
except AssertionError:
msssim_orig = ssim(tensor2im(outputs, *image_range, 'torch'),
inputs_255, data_range=255, size_average=True)
label = "SSIM"
lpips_orig = loss_fn_vgg(outputs, inputs).sum()
avg_psnr_orig += psnr_orig
avg_msssim_orig += msssim_orig
avg_lpips_orig += lpips_orig / B
count += B
outputs_orig = outputs.clone()
# Initialize zt with y
with torch.no_grad():
init_p = y
zt = init_p.detach().clone().requires_grad_()
with torch.no_grad():
# Logging Purpose, sqnorm of denoiser output
dt = net.denoiser(zt)
vart = torch.sum(dt**2, dim=(1,2,3), keepdim=True)/(zC*zH*zW)
var_scale = stddev**2 / vart.mean()
vart *= var_scale
varL = args.stop_ratio * vart.mean().item()
# Compute delta
delta = args.delta if (stddev**2/base_var) > 1 else 1.0
for t in range(args.num_iter):
with torch.no_grad():
# Logging Purpose, sqnorm of denoiser output
dt = net.denoiser(zt)
vart = torch.sum(dt**2, dim=(1,2,3), keepdim=True)/(zC*zH*zW)
vart *= var_scale
scaled_denoiser_sqnorm = vart.mean()
# Evaluate NLL
z_p = net.encoder(decoder(zt))
obj = 1/(2*(stddev**2)) * criterion(z_p, y)
obj.backward()
with torch.no_grad():
# Gradient of NLL
zt_grad = -zt.grad
# Scale the output of the denoiser (approximate gradient of the log prior)
zt_grad += args.alpha * max(0.1, (stddev**2/base_var)**2) * dt
lr = args.lr / max(0.1, (stddev**2/base_var)**delta)
zt.data = zt + lr * zt_grad
zt.grad.zero_()
if t % args.print_freq == args.print_freq - 1 or t == args.num_iter - 1 or t==0:
outputs = decoder(zt)
avg_psnr, avg_msssim, avg_lpips = print_update(i,
t, scaled_denoiser_sqnorm, obj, B, outputs, inputs,
psnr_orig, msssim_orig,
avg_psnr, avg_msssim,
lpips_orig/B, avg_lpips, last_iter=t==args.num_iter-1)
stats = print_avg(e*min(len(test_dataloader), args.max_batch) + i+1, count, avg_psnr, avg_psnr_orig, avg_msssim, avg_msssim_orig, avg_lpips, avg_lpips_orig)
psnr_vals[e] = avg_psnr/count
psnr_orig_vals[e] = avg_psnr_orig/count
ssim_vals[e] = avg_msssim/(e+1)
ssim_orig_vals[e] = avg_msssim_orig/(e+1)
lpips_vals[e] = avg_lpips/(e+1)
lpips_orig_vals[e] = avg_lpips_orig/(e+1)
if args.save_images:
output_dir = args.output_dir
subdirs = ['targets', 'orig', 'updated']
for sd in subdirs:
if not os.path.exists(os.path.join(output_dir, args.img_prefix, sd, "files")):
os.makedirs(os.path.join(output_dir, args.img_prefix, sd, "files"))
targets = tensor2im(inputs, *image_range)
orig = tensor2im(outputs_orig, *image_range)
updated = tensor2im(outputs, *image_range)
for b in range(B):
plt.imsave(os.path.join(output_dir,
args.img_prefix, "targets", "files", "targets{:04d}.png".format(i*args.batch_size + b)), targets[b,:,:,:])
plt.imsave(os.path.join(output_dir, args.img_prefix, "orig", "files", "orig{:04d}.png".format(i*args.batch_size + b)), orig[b,:,:,:])
plt.imsave(os.path.join(output_dir, args.img_prefix, "updated", "files", "updated{:04d}.png".format(i*args.batch_size + b)), updated[b,:,:,:])
if args.save_images and args.image_size > 0:
save_image_collections(args.img_prefix, np.minimum(36, i*args.batch_size), output_dir, nrow=6)
try:
fid_orig = calculate_fid_given_paths(
["{}/{}/orig/files/".format(output_dir, args.img_prefix), "{}/{}/targets/files/".format(output_dir, args.img_prefix)],
min(args.batch_size, 16),
device,
2048,
3)
fid_updated = calculate_fid_given_paths(
["{}/{}/updated/files/".format(output_dir, args.img_prefix), "{}/{}/targets/files/".format(output_dir, args.img_prefix)],
min(args.batch_size, 16),
device,
2048,
3)
avg_fid += fid_updated
avg_fid_orig += fid_orig
#stats["FID Gain"] += fid_updated - fid_orig
print("FID: {:.2f}, FID Orig: {:.2f}, FID Gain: {:.2f}".format(fid_updated, fid_orig, fid_orig - fid_updated))
fid_vals[e] = fid_updated
fid_orig_vals[e] = fid_orig
except RuntimeError as e:
print("FID unavailable")
print(e)
pass
try:
stats["FID"] = avg_fid / L
stats["FID Orig"] = avg_fid_orig / L
stats["FID Gain"] = -stats["FID"] + stats["FID Orig"]
stats['PSNR Numpy'] = psnr_vals.tolist()
stats['PSNR Orig Numpy'] = psnr_orig_vals.tolist()
stats['SSIM Numpy'] = ssim_vals.tolist()
stats['SSIM Orig Numpy'] = ssim_orig_vals.tolist()
stats['LPIPS Numpy'] = lpips_vals.tolist()
stats['LPIPS Orig Numpy'] = lpips_orig_vals.tolist()
stats['FID Numpy'] = fid_vals.tolist()
stats['FID Orig Numpy'] = fid_orig_vals.tolist()
except KeyError:
pass
print(stats)
return stats
def main():
if 'cifar' in args.dataset:
Enc = ae.Encoder_CIFAR
Dec = ae.Decoder_CIFAR
else:
Enc = ae.Encoder
Dec = ae.Decoder
encoder = Enc(num_out=args.num_channels,
num_hidden=args.num_hidden,
num_conv_blocks=args.num_conv_blocks,
num_residual_blocks=args.num_residual_blocks,
normalization=nn.BatchNorm2d,
activation=nn.PReLU,
power_norm=args.power_norm)
decoder = Dec(num_in=args.num_channels,
num_hidden=args.num_hidden,
num_conv_blocks=args.num_conv_blocks,
num_residual_blocks=args.num_residual_blocks,
normalization=nn.BatchNorm2d,
activation=nn.PReLU,
no_tanh=False)
net = ae.Generator(encoder, decoder)
print(args)
try:
filepath = args.jscc_model_path
print("Try loading "+filepath)
net.load_state_dict(torch.load(filepath, map_location=dev))
except Exception as e:
print(e)
print("Loading Failed...")
exit()
bfcnn = BF_CNN(1, 64, 3, 20, args.num_channels)
try:
filepath = args.bfcnn_model_path
print("Try loading "+filepath)
bfcnn.load_state_dict(torch.load(filepath, map_location=dev))
except Exception as e:
print(e)
print("Loading Failed...")
exit()
bfcnn.to(device)
net.denoiser = lambda z_: -bfcnn(z_)
net.to(device)
if args.save_json:
args.img_prefix = os.path.join(args.dataset,
"{}_snr_train_{:.1f}_snr_{:.1f}_nc_{}".format(args.img_prefix,
args.snr_train,
args.snr,
args.num_channels))
stats = test_latent(net, 10**(-0.05*args.snr))
if args.save_json:
save_to_json(stats, args)
if __name__=='__main__':
main()