-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_deep_jscc.py
executable file
·221 lines (176 loc) · 7.32 KB
/
train_deep_jscc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import numpy as np
import torch
import torch.nn as nn
import os
import time
import matplotlib.pyplot as plt
from PIL import Image
import json
from torch.utils.tensorboard import SummaryWriter
import torch.optim as optim
import loader
import models.autoencoders as ae
import utils
import config
parser = config.get_common_parser()
parser = config.get_train_parser(parser)
args = parser.parse_args()
dev = "cuda:{}".format(args.gpu) if args.gpu>=0 else "cpu"
device = torch.device(dev)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_dataloader = loader.get_train_dataloader(args)
test_dataloader = loader.get_test_dataloader(args)
print(len(train_dataloader))
print(len(test_dataloader))
criterion = nn.MSELoss()
def test(net, stddev=0., saved_dir=None, writer=None, epoch=0):
net.eval()
avg_psnr = 0.
count = 0.
start_time = time.time()
with torch.no_grad():
for i, data in enumerate(test_dataloader):
inputs = data[0].to(device)
outputs = net(inputs, stddev)
avg_psnr += utils.PSNR(reduction='sum')(outputs, inputs, -1, 1, cuda=True)
count += inputs.size(0)
if args.show_outputs:
plt.imsave('test.png', utils.batch2im(outputs, 3, 3, -1, 1, im_height=args.image_size, im_width=args.image_size))
break
if i%10==9:
print('[{:4d} / {:4d}] - Average PSNR: {}, time taken: {:.2f} sec'.format(i+1,
len(test_dataloader), avg_psnr/count, time.time()-start_time))
print('[{:4d} / {:4d}] - Average PSNR: {}, time taken: {:.2f} sec'.format(i+1,
len(test_dataloader), avg_psnr/count, time.time()-start_time))
if writer is not None:
writer.add_scalar('PSNR/test', avg_psnr/count, epoch+1)
def train(net,
optimizer_G,
num_epoch,
stddev=0.,
saved_dir=None,
model_name=None,
which_epoch=0,
writer=None):
if not os.path.exists(saved_dir):
os.makedirs(saved_dir)
if 'cifar' in args.dataset:
scheduler_G = optim.lr_scheduler.StepLR(optimizer_G, step_size=args.epochs // 2, gamma=0.1)
elif 'openimages' in args.dataset:
scheduler_G = optim.lr_scheduler.StepLR(optimizer_G, step_size=30, gamma=0.1)
else:
raise NotImplementedError()
for epoch in range(which_epoch, num_epoch): # loop over the dataset multiple times
start_time = time.time()
#train_iter = iter(train_dataloader)
running_loss_mse = 0.0
running_loss = 0.0
net.train()
for i, data in enumerate(train_dataloader):
if args.debug and i==10:
break
inputs= data[0].to(device)
# zero the parameter gradients
optimizer_G.zero_grad()
# forward
# stddev: max(0, 𝜎±eps) where eps~N(0, 0.01*I).
outputs, z = net(inputs, stddev, return_latent=True)
mse_loss = criterion(outputs, inputs)
loss = mse_loss
loss.backward()
optimizer_G.step()
# print statistics
running_loss_mse += mse_loss.item()
running_loss += loss.item()
if i % args.print_freq == args.print_freq-1 or i == len(train_dataloader)-1:
print('[%d, %5d] loss: %.4f, mse: %.4f' %
(epoch + 1, i + 1, running_loss / (i+1), running_loss_mse/(i+1)))
if writer is not None:
writer.add_scalar("Loss/train", running_loss / (i+1), epoch+1)
writer.add_scalar("MSE/train", running_loss_mse / (i+1), epoch+1)
if epoch % args.display_freq == args.display_freq-1:
with torch.no_grad():
targets = Image.fromarray(utils.batch2im(inputs, 2, 2, -1, 1,
im_height=args.train_image_size, im_width=args.train_image_size))
targets.save(os.path.join(saved_dir, "e{:03d}_targets.png".format(epoch+1)))
outputs = Image.fromarray(utils.batch2im(outputs, 2, 2, -1, 1,
im_height=args.train_image_size, im_width=args.train_image_size))
outputs.save(os.path.join(saved_dir, "e{:03d}_outputs.png".format(epoch+1)))
scheduler_G.step()
print('Time Taken: %d sec' % (time.time() - start_time))
if epoch % args.save_freq == args.save_freq-1:
torch.save(net.state_dict(),
os.path.join(saved_dir,"{}_{}_e{:03d}.pb".format(model_name,
args.num_channels,
epoch+1)))
if epoch % args.test_freq == args.test_freq - 1:
test(net, stddev, saved_dir=saved_dir, writer=writer, epoch=epoch)
print('Finished Training')
test(net, stddev, saved_dir=saved_dir)
def train_model(net, epoch=30, stddev=0., wd=0., model_name="", saved_dir=None, writer=None):
optimizer_G = optim.Adam(net.parameters(),
lr=args.lr,
betas=(0.0, 0.9),
weight_decay=args.weight_decay)
train(net,
optimizer_G,
epoch,
stddev=stddev,
saved_dir=saved_dir,
model_name=model_name,
writer=writer)
def main():
if 'cifar' in args.dataset:
Enc = ae.Encoder_CIFAR
Dec = ae.Decoder_CIFAR
else:
Enc = ae.Encoder
Dec = ae.Decoder
encoder = Enc(num_out=args.num_channels,
num_hidden=args.num_hidden,
num_conv_blocks=args.num_conv_blocks,
num_residual_blocks=args.num_residual_blocks,
normalization=nn.BatchNorm2d,
activation=nn.PReLU,
power_norm=args.power_norm)
decoder = Dec(num_in=args.num_channels,
num_hidden=args.num_hidden,
num_conv_blocks=args.num_conv_blocks,
num_residual_blocks=args.num_residual_blocks,
normalization=nn.BatchNorm2d,
activation=nn.PReLU,
no_tanh=False)
print(encoder)
print(decoder)
print(args)
net = ae.Generator(encoder, decoder)
if args.pretrained_model_path is not None:
try:
filepath = args.pretrained_model_path
print("Try loading "+filepath)
net.load_state_dict(torch.load(filepath, map_location=dev))
except Exception as e:
print(e)
print("Loading Failed. Initializing Networks...")
pass
net.to(device)
if args.eval:
test(net, 10**(-0.05*args.snr))
exit()
saved_dir = args.model_path
if not os.path.exists(saved_dir):
os.makedirs(saved_dir)
writer = SummaryWriter(saved_dir)
with open(os.path.join(saved_dir, 'args.txt'), 'w') as f:
json.dump(vars(args), f, indent=4)
train_model(net,
epoch=args.epochs,
stddev=10**(-0.05*args.snr),
model_name=args.model_name,
saved_dir=saved_dir,
writer=writer)
torch.save(net.state_dict(),
os.path.join(saved_dir,args.model_name+"_{}.pb".format(args.num_channels)))
if __name__=='__main__':
main()