-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsymbols.tex
582 lines (440 loc) · 14.8 KB
/
symbols.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
% \newsymbol{label}{description}{symbol}
\newsymbol{lie bracket}
{Lie bracket}
{$[\ph, \ph]$}
\newsymbol{lie algebra}
{Lie algebras}
{$\glie, \hlie, \dotsc$}
\newsymbol{general linear lie algebra matrix}
{general linear Lie~algebra of~$n \times n$ matrices}
{$\gllie(n, \kf)$}
\newsymbol{general linear lie algebra endomorphism}
{general linear Lie~algebra of~$V$}
{$\gllie(V)$}
\newsymbol{heisenberg lie algebra}
{Heisenberg Lie~algebra}
{$\heisenberglie(n, \kf)$}
\newsymbol{heisenberg basis}
{basis of Heisenberg Lie~algebra}
{$p_1, \dotsc, p_n, q_1, \dotsc, q_n, c$}
\newsymbol{standard basis matrix}
{standard basis matrix of~$\Mat(n \times m, \kf)$}
{$E_{ij}$}
\newsymbol{standard basis vector}
{standard basis vector of~$\kf^n$}
{$e_i$}
\newsymbol{special linear lie algebra matrices}
{special linear Lie~algebra of~$n \times n$ matrices}
{$\sllie(n, \kf)$}
\newsymbol{special linear lie algebra endomorphism}
{special linear Lie~algebra of~$V$}
{$\sllie(V)$}
\newsymbol{upper triangular lie algebra}
{Lie~algebra of upper triangular matrices of size~$n$}
{$\trianglie(n, \kf)$}
\newsymbol{strictly upper triangular lie algebra}
{Lie~algebra of strictly upper triangular matrices of size~$n$}
{$\upperlie(n, \kf)$}
\newsymbol{diagonal lie algebra}
{Lie~algebra of diagonal matrices of size~$nn$}
{$\diaglie(n, \kf)$}
\newsymbol{affine transformation lie algebra}
{Lie~algebra of affine transformations of~$\kf^n$}
{$\afflie(n, \kf)$}
\newsymbol{commutator space}
{commutator space of two subsets~$X$,~$Y$}
{$[X, Y]$}
\newsymbol{centralizer of subset}
{centralizer of subset~$X$}
{$\centerlie_{\glie}(X)$}
\newsymbol{centralizer of element}
{centralizer of an element~$x$}
{$\centerlie_{\glie}(x)$}
\newsymbol{center}
{center of~$\glie$}
{$\centerlie(\glie)$}
\newsymbol{standard basis of sl2}
{standard basis of~$\sllie(2, \kf)$}
{$e$,~$h$,~$f$}
\newsymbol{normalizer}
{normalizer of a linear subspace~$U$}
{$\normallie_{\glie}(U)$}
\newsymbol{product of lie algebras}
{product of the Lie~algebras~$\glie_\lambda$}
{$\prod_{\lambda \in \Lambda} \glie$}
\newsymbol{external direct sum of lie algebras}
{(external) direct sum of the Lie~algebras~$\glie_\lambda$}
{$\bigoplus_{\lambda \in \Lambda} \glie_\lambda$}
\newsymbol{quotient of lie algebra}
{quotient of~$\glie$ by its ideal~$I$}
{$\glie/I$}
\newsymbol{abelianization of lie algebra}
{abelianization of~$\glie$}
{$\glie^{\ab}$}
\newsymbol{extension of scalars of lie algebra}
{extension of scalars of~$\glie$ from~$\kf$ to~$A$}
{$A \tensor_{\kf} \glie$,~$\glie \tensor_{\kf} A$}
\newsymbol{loop lie algebra}
{loop Lie~algebra of~$\glie$}
{$\looplie(\glie)$}
\newsymbol{opposite algebra}
{opposite algebra of~$A$}
{$A^{\op}$}
\newsymbol{opposite element}
{element of~$A^\op$ corresponding to an element~$a$ of~$A$}
{$a^{\op}$}
\newsymbol{opposite lie algebra}
{opposite Lie~algebra of~$\glie$}
{$\glie^{\op}$}
\newsymbol{adjoint map}
{homomorphism of the adjoint representation}
{$\ad$}
\newsymbol{category lie algebras}
{category of~\liealgebras{$\kf$}}
{$\cLie{\kf}$}
\newsymbol{category algebras}
{category of~\algebras{$\kf$}}
{$\cAlg{\kf}$}
\newsymbol{category abelian lie algebras}
{category of abelian~\liealgebras{$\kf$}}
{$\cLieab{\kf}$}
\newsymbol{derivations}
{Lie~algebra of derivations of the \enquote{algebra}~$A$}
{$\Der(A)$}
\newsymbol{inner derivations}
{space of inner derivations of~$\glie$}
{$\InnDer(\glie)$}
\newsymbol{outer derivations}
{space of outer derivations of~$\glie$}
{$\OutDer(\glie)$}
\newsymbol{exponential}
{exponential of~$f$}
{$\exp(f)$}
\newsymbol{automorphisms}
{group of Lie~algebra homomorphisms of~$\glie$}
{$\Aut(\glie)$}
\newsymbol{inner automorphisms}
{group of inner autorphisms of~$\glie$}
{$\InnAut(\glie)$}
\newsymbol{outer automorphisms}
{group of outer derivations of~$\glie$}
{$\OutAut(\glie)$}
\newsymbol{action on an element}
{action of~$x$ on~$m$}
{$x \act m$}
\newsymbol{product of representations}
{product of the representations~$M_\lambda$}
{$\prod_{\lambda \in \Lambda} M_\lambda$}
\newsymbol{direct sum of representations}
{direct sum of the representations~$M_\lambda$}
{$\bigoplus_{\lambda \in \Lambda} M_\lambda$}
\newsymbol{tensor product of representations}
{tensor product of representations~$M_1, \dotsc, M_r$}
{$M_1 \tensor \dotsb \tensor M_r$}
\newsymbol{internal hom representation}
{$\Hom$-representation of~$M$ and~$N$}
{$\Hom_{\kf}(M, N)$}
\newsymbol{dual space representation}
{dual representation of~$M$}
{$M^*$}
\newsymbol{certain subrepresentation}
{the subrepresentation of~$M$ spanned by all~$x \act m$}
{$\glie M$}
\newsymbol{invariants of representation}
{space of invariants of~$M$}
{$M^{\glie}$}
\newsymbol{quotient representation}
{quotient representation of~$M$ by~$N$}
{$M/N$}
\newsymbol{exterior power}
{\howmanyth{$d$} exterior power of~$V$}
{$\Exterior^d(V)$}
\newsymbol{symmetric power}
{\howmanyth{$d$} symmetric power of~$V$}
{$\Symm^d(V)$}
\newsymbol{hom of representations}
{space of homomorphisms of representations from~$M$ to~$N$}
{$\Hom_{\glie}(M,N)$}
\newsymbol{end of representations}
{algebra of endomorphisms of representations of~$M$}
{$\End_{\glie}(M)$}
\newsymbol{category lie algebra representation}
{category of representations of~$\glie$}
{$\cRep{\glie}$}
\newsymbol{category lie algebra trivial representations}
{category of trivial representations of~$\glie$}
{$\cReptriv{\glie}$}
\newsymbol{abelian extensions}
{class of abelian extensions of~$\glie$}
{$\AbEx(\glie)$}
\newsymbol{abelian extensions by h}
{class of abelian extensions of~$\glie$ by~$\hlie$}
{$\AbEx(\glie, \hlie)$}
\newsymbol{abelian extensions by h via theta}
{class of abelian extensions of~$\glie$ by~$\hlie$ via~$\theta$}
{$\AbEx(\glie, \hlie, \theta)$}
\newsymbol{abelian extensions associated to M}
{class of abelian extensions of~$\glie$ associated to the representation~$M$}
{$\AbEx(\glie, M)$}
\newsymbol{internal semidirect product}
{internal semidirect product of~$\glie$ by~$\hlie$}
{$\glie \ltimes \hlie$}
\newsymbol{external semidirect product}
{external semidirect product of~$\glie$ by~$\hlie$ along~$\theta$}
{$\glie \ltimes_\theta \hlie$}
\newsymbol{cyclic sum}
{abbrev. for the cyclic sum~$F(a,b,c) + F(b,c,a) + F(c,a,b)$}
{$\sum_{\cyc} F(a,b,c)$}
\newsymbol{chain complex}
{chain complex (of vector spaces)}
{
\begin{tabular}[t]{@{}l@{}}
$((X_n)_{n \in \Integer}, (d_n)_{n \in \Integer})$, \\
$(X_\bullet, d_\bullet)$,\,~$X_\bullet$
\end{tabular}
}
\newsymbol{cochain complex}
{cochain complex (of vector spaces)}
{
\begin{tabular}[t]{@{}l@{}}
$((X^n)_{n \in \Integer}, (d^n)_{n \in \Integer})$, \\
$(X^\bullet, d^\bullet)$,\,~$X^\bullet$
\end{tabular}
}
\newsymbol{differential}
{differential of a (co)chain complex}
{$d$}
\newsymbol{alternating maps}
{space of alternating maps from~$V \times \dotsb \times V$ to~$W$}
{$\Alt^n(V,W)$}
\newsymbol{lie algebra chain complex}
{Lie algebra chain complex of~$\glie$ with coefficients in~$M$}
{$\Chain_\bullet(\glie, M)$}
\newsymbol{lie algebra cochain complex}
{Lie algebra cochain complex of~$\glie$ with coefficients in~$M$}
{$\Chain^\bullet(\glie, M)$}
\newsymbol{cycles}
{space of~\cycles{$n$} of~$X_\bullet$}
{$\Cycle_n(X_\bullet)$}
\newsymbol{boundaries}
{space of~\boundaries{$n$} of~$X_\bullet$}
{$\Boundary_n(X_\bullet)$}
\newsymbol{homology}
{\howmanyth{$n$} homology of~$X_\bullet$}
{$\Homology_n(X_\bullet)$}
\newsymbol{cocycles}
{space of~\cocycles{$n$} of~$X^\bullet$}
{$\Cycle^n(X^\bullet)$}
\newsymbol{coboundaries}
{space of~\coboundaries{$n$} of~$X^\bullet$}
{$\Boundary^n(X^\bullet)$}
\newsymbol{cohomology}
{\howmanyth{$n$} cohomology of~$X^\bullet$}
{$\Homology^n(X^\bullet)$}
\newsymbol{lie algebra homology}
{\howmanyth{$n$} Lie~algebra homology of~$\glie$ with coefficients in~$M$}
{$\Homology_n(\glie, M)$}
\newsymbol{lie algebra cohomology}
{\howmanyth{$n$} Lie~algebra cohomology of~$\glie$ with coefficients in~$M$}
{$\Homology^n(\glie, M)$}
\newsymbol{homomorphism of chain complexes}
{homomorphism of chain complexes}
{$f_\bullet, g_\bullet, \dotsc$}
\newsymbol{induced map on homology}
{map induced on the~\howmanyth{$n$} homology by~$f_\bullet$}
{$\Homology_n(f_\bullet)$}
\newsymbol{homomorphism of cochain complexes}
{homomorphism of cochain complexes}
{$f^\bullet, g^\bullet, \dotsc$}
\newsymbol{induced map on cohomology}
{map induced on the~\howmanyth{$n$} cohomology by~$f^\bullet$}
{$\Homology^n(f^\bullet)$}
\newsymbol{homomorphism of lie algebra chain complex}
{homomorphism of Lie algebra chain complexes induced by~$f$}
{$\Chain_\bullet(f)$}
\newsymbol{homomorphism of lie algebra homology}
{map induced on the~\howmanyth{$n$} Lie~algebra homology by~$f$}
{$\Homology_n(f)$}
\newsymbol{homomorphism of lie algebra cochain complex}
{homomorphism of Lie algebra chain cocomplexes induced by~$f$}
{$\Chain^\bullet(f)$}
\newsymbol{homomorphism of lie algebra cohomology}
{map induced on the~\howmanyth{$n$} Lie~algebra cohomology by~$f$}
{$\Homology^n(f)$}
\newsymbol{chain complex image}
{image of the homomorphism of chain complexes~$f_\bullet$}
{$\im(f_\bullet)$}
\newsymbol{chain complex kernel}
{kernel of the homomorphism of chain complexes~$f_\bullet$}
{$\ker(f_\bullet)$}
\newsymbol{cochain complex image}
{image of the homomorphism of cochain complexes~$f^\bullet$}
{$\im(f^\bullet)$}
\newsymbol{cochain complex kernel}
{kernel of the homomorphism of cochain complexes~$f^\bullet$}
{$\ker(f^\bullet)$}
\newsymbol{coinvariants}
{space of coinvariants of a~\representation{$\glie$}~$M$}
{$M_{\glie}$}
\newsymbol{derivations of module}
{space of derivations of a~\representation{$\glie$}~$M$}
{$\Der(\glie, M)$}
\newsymbol{inner derivations of module}
{space of inner derivations of a~\representation{$\glie$}~$M$}
{$\InnDer(\glie, M)$}
\newsymbol{outer derivations of module}
{space of outer derivations of a~\representation{$\glie$}~$M$}
{$\OutDer(\glie, M)$}
\newsymbol{tensor product of chain complex and module}
{image of~$X_\bullet$ under~$(\ph) \tensor Y$}
{$X_\bullet \tensor Y$}
\newsymbol{category modules}
{category of left~\modules{$A$}}
{$\cMod{A}$}
\newsymbol{simple tensor}
{alternative notation for the simple tensor~$v_1 \tensor \dotsb \tensor v_n$}
{$(v_1, \dotsc, v_n)$}
\newsymbol{tensor power}
{\howmanyth{$d$} tensor power of~$V$}
{$V^{\tensor d}$}
\newsymbol{tensor algebra}
{tensor algebra of~$V$}
{$\Tensor(V)$}
\newsymbol{tensor algebra on morphisms}
{extension of~$f$ to a homomorphism between tensor algebras}
{$\Tensor(f)$}
\newsymbol{noncommutative polynomial algebra}
{noncommutative polynomial in the variables~$X_i$}
{$\kf\gen{ X_i \suchthat i \in I}$}
\newsymbol{simple symmetric tensor}
{symple symmetric tensor of~$v_1, \dotsc, v_d$ in~$\Symm^d(V)$}
{$v_1 \dotsm v_d$}
\newsymbol{symmetric algebra}
{symmetric algebra of~$V$}
{$\Symm(V)$}
\newsymbol{symmetric algebra on morphisms}
{extension of~$f$ to a homomorphism between symmetric algebras}
{$\Symm(f)$}
\newsymbol{category commutative algebras}
{category of commutative~\algebras{$\kf$}}
{$\cCAlg{\kf}$}
\newsymbol{exterior algebra}
{exterior algebra of~$V$}
{$\Exterior(V)$}
\newsymbol{universal enveloping algebra}
{universal enveloping algebra of~$\glie$}
{$\Univ(\glie)$}
\newsymbol{element in universal enveloping algebra}
{image of~$x$ in the universal enveloping algebra}
{$\class{x}$}
\newsymbol{universal enveloping algebra on morphisms}
{extension of~$\varphi$ to an (anti-)homomorphism between universal enveloping algebras}
{$\Univ(\varphi)$}
\newsymbol{antipode}
{antipode of~$\Univ(\glie)$}
{$S$}
\newsymbol{augumentation}
{augumentation of a~\algebra{$\kf$}}
{$\varepsilon$}
\newsymbol{augumented algebra}
{augumented~\algebra{$\kf$}}
{$(A, \varepsilon)$}
\newsymbol{counit}
{counit of~$\Univ(\glie)$}
{$\varepsilon$}
\newsymbol{comultiplication}
{comultiplication of~$\Univ(\glie)$}
{$\Delta$}
\newsymbol{free lie algebra set}
{free Lie~algebra on the set~$X$}
{$\freelieset(X)$}
\newsymbol{free lie algebra vector space}
{free Lie~algebra on the vector space~$V$}
{$\freelievect(V)$}
\newsymbol{free lie algebra set on morphisms}
{induced homomorphism between free Lie~algebras}
{$\freelieset(f)$}
\newsymbol{free lie algebra vector space on morphisms}
{induced homomorphism between free Lie~algebras}
{$\freelievect(f)$}
\newsymbol{homogeneous part}
{\howmanyth{$p$} homogeneous part of the graded algebra~$A$}
{$A_p$}
\newsymbol{homogeneous summand}
{\howmanyth{$p$} homogeneous summand of the element~$x$}
{$x_p$}
\newsymbol{restricted homomorphism of graded algebras}
{\howmanyth{$p$} component of a homomorphism of graded algebras~$\Phi$}
{$\Phi_p$}
\newsymbol{category graded algebras}
{category of graded~\algebras{$\kf$}}
{$\cgAlg{\kf}$}
\newsymbol{filtered part}
{\howmanyth{$p$} term of the filtration of~$A$}
{$A_{(p)}$}
\newsymbol{restricted homomorphism of filtered algebras}
{\howmanyth{$p$} component of a homomorphism of filtered algebras~$\Phi$}
{$\Phi_{(p)}$}
\newsymbol{category filtered algebras}
{category of filtered~\algebras{$\kf$}}
{$\cfAlg{\kf}$}
\newsymbol{length function}
{length function of~$G$ with respect to~$S$}
{$\ell_S$}
\newsymbol{degree in filtered algebra}
{degree of an element~$x$ of a filtered~\algebra{$\kf$}~$A$}
{$\deg(x)$}
\newsymbol{graded residue class}
{residue class of~$x$ in~$\gr[p](A)$}
{$\fclass{x}_p$}
\newsymbol{homogeneous part of associated graded algebra}
{\howmanyth{$p$} homogeneous part of the associated graded algebra of~$A$}
{$\gr[p]{A}$}
\newsymbol{associated graded algebra}
{associated graded algebra of a filtered algebra~$A$}
{$\gr(A)$}
\newsymbol{canonical map into associated graded algebra}
{canonical map from~$A$ to~$\gr(A)$ for a filtered algebra~$A$}
{$\gamma$}
\newsymbol{associated graded algebra on morphisms}
{induced homomorphism between associated graded algebras}
{$\gr(\Phi)$}
\newsymbol{induced homogeneous ideal}
{homogeneous ideal induced by~$I$}
{$\gr(I)$}
\newsymbol{skew polynomial algebra}
{skew polynomial algebra}
{$R[t; \delta]$}
\newsymbol{mod elements}
{$v_1$ and~$v_2$ are equal up to an element of~$W$}
{$v_1 \equiv v_2 \pmod{W}$}
\newsymbol{ordered n tuples}
{set of ordered~\tuples{$n$} with entries in~$I$}
{$I^n$}
\newsymbol{ordered leq n tuples}
{set of ordered tuples with entries in~$I$ of length~$\leq n$}
{$I^{(n)}$}
\newsymbol{ordered tuples}
{set of all ordered tuples with entries in~$I$}
{$I^*$}
\newsymbol{ordered monomial}
{ordered monomial associated to~$\alpha \in I^*$}
{$x_\alpha$}
\newsymbol{ordered concatination}
{ordered concatination of the tuples~$\alpha$ and~$\beta$}
{$\alpha \cdot \beta$}
\newsymbol{element leq tuple}
{$i$ is less or equal to the first entry of~$\alpha$}
{$i \leq \alpha$}
\newsymbol{quotient chain complex}
{quotient chain complex}
{$X_\bullet / Y_\bullet$}
\newsymbol{directed union of chain complexes}
{directed union of the chain complexes~$X_\bullet^{(i)}$}
{$\bigcup_{i \in I} X_\bullet^{(i)}$}
\newsymbol{direct sum of chain complexes}
{direct sum of chain complexes}
{$\bigoplus_{i \in I} X_\bullet^{(i)}$}
\newsymbol{right derived functor}
{right derived functor(s) of~$F$}
{$\Right^\bullet F$}