-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaccuracy.py
185 lines (144 loc) · 5.71 KB
/
accuracy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# calculate the accuracy of just the output from yolo model
# and the output from yolo+gcn
import torch
from gcn import GCN
from dataset import CocoDataset
from torch.utils.data import DataLoader
import pickle
import numpy as np
from sklearn.metrics import f1_score
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_path = 'Results/model_exp2.pth'
num_classes = 80
train_path = '/home/user/Data/coco2014/train2014'
train_ann_file = '/home/user/Data/coco2014/annotations/instances_train2014.json'
val_path = '/home/user/Data/coco2014/val2014'
val_ann_file = '/home/user/Data/coco2014/annotations/instances_val2014.json'
train_pickle_file = 'train.pickle'
val_pickle_file = 'val.pickle'
adj = pickle.load(open('adj.pickle', 'rb'))
adj = np.float32(adj / np.max(adj) + np.identity(num_classes))
adj_tensor = torch.from_numpy(adj)
model = GCN(adj_tensor, num_classes, 80, num_classes)
model.load_state_dict(torch.load(model_path))
train_dataset = CocoDataset(train_path, train_ann_file, num_classes)
val_dataset = CocoDataset(val_path, val_ann_file, num_classes)
train_loader = DataLoader(train_dataset, batch_size=1, shuffle=True, num_workers=1)
val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=1)
train_detections = pickle.load(open(train_pickle_file, 'rb'))
val_detections = pickle.load(open(val_pickle_file, 'rb'))
total_train_images = len(train_loader)
total_val_images = len(val_loader)
model.eval()
print('Running...')
print('\n')
with torch.no_grad():
correct_yolo = 0
correct_gcn = 0
total_instances = 0
f1_yolo = []
f1_gcn = []
for img_path, label in train_loader:
img_path = img_path[0]
img_name = img_path.rsplit('/', 1)[1]
class_ids = train_detections[img_name]
y_true = np.array(label).squeeze()
y_yolo = np.zeros(num_classes)
y_gcn = np.zeros(num_classes)
for class_id in class_ids:
if class_id is not None:
if label.T[class_id] == 1:
correct_yolo += 1
y_yolo[class_id] = 1
input_vector = torch.zeros((1, num_classes))
for class_id in class_ids:
input_vector[0, class_id] = 1
output = model(input_vector)
predictions = torch.sigmoid(output)
predictions[predictions >= 0.5] = 1
predictions[predictions < 0.5] = 0
# concatenate output from yolo and gcn
for class_id in class_ids:
if class_id is not None:
predictions.T[class_id] = 1
y_gcn[class_id] = 1
label = label.T
predictions = predictions.T
for idx in range(0, len(label)):
if label[idx].item() == 1:
if predictions[idx].item() == 1:
correct_gcn += 1
y_gcn[idx] = 1
total_instances += 1
f1_yolo_sample = f1_score(y_true, y_yolo, zero_division=1)
f1_yolo.append(f1_yolo_sample)
f1_gcn_sample = f1_score(y_true, y_gcn, zero_division=1)
f1_gcn.append(f1_gcn_sample)
gcn_acc = (correct_gcn / total_instances) * 100.0
yolo_acc = (correct_yolo / total_instances) * 100.0
f1_yolo = np.mean(f1_yolo)
f1_gcn = np.mean(f1_gcn)
print('Training set')
print(f'total_instances: {int(total_instances)} ')
print(f'yolo: {int(correct_yolo)}')
print(f'gcn: {int(correct_gcn)}')
print(f'yolo acc: {round(yolo_acc, 2)}')
print(f'gcn acc: {round(gcn_acc, 2)}')
print(f'improvement: {correct_gcn - correct_yolo}')
print(f'f1 yolo: {np.round(f1_yolo, 2)}')
print(f'f1 gcn: {np.round(f1_gcn, 2)}')
correct_yolo = 0
correct_gcn = 0
total_instances = 0
f1_yolo = []
f1_gcn = []
for img_path, label in val_loader:
img_path = img_path[0]
img_name = img_path.rsplit('/', 1)[1]
class_ids = val_detections[img_name]
y_true = np.array(label).squeeze()
y_yolo = np.zeros(num_classes)
y_gcn = np.zeros(num_classes)
for class_id in class_ids:
if class_id is not None:
if label.T[class_id] == 1:
correct_yolo += 1
y_yolo[class_id] = 1
input_vector = torch.zeros((1, num_classes))
for class_id in class_ids:
input_vector[0, class_id] = 1
output = model(input_vector)
predictions = torch.sigmoid(output)
predictions[predictions >= 0.5] = 1
predictions[predictions < 0.5] = 0
# concatenate output from yolo and gcn
for class_id in class_ids:
if class_id is not None:
predictions.T[class_id] = 1
y_gcn[class_id] = 1
label = label.T
predictions = predictions.T
for idx in range(0, len(label)):
if label[idx].item() == 1:
if predictions[idx].item() == 1:
correct_gcn += 1
y_gcn[idx] = 1
total_instances += 1
f1_yolo_sample = f1_score(y_true, y_yolo, zero_division=1)
f1_yolo.append(f1_yolo_sample)
f1_gcn_sample = f1_score(y_true, y_gcn, zero_division=1)
f1_gcn.append(f1_gcn_sample)
gcn_acc = (correct_gcn / total_instances) * 100.0
yolo_acc = (correct_gcn / total_instances) * 100.0
f1_yolo = np.mean(f1_yolo)
f1_gcn = np.mean(f1_gcn)
print('\n')
print('Validation set')
print(f'total_instances: {int(total_instances)} ')
print(f'yolo: {int(correct_yolo)}')
print(f'gcn: {int(correct_gcn)}')
print(f'yolo acc: {round(yolo_acc, 2)}')
print(f'gcn acc: {round(gcn_acc, 2)}')
print(f'improvement: {correct_gcn - correct_yolo}')
print(f'f1 yolo: {np.round(f1_yolo, 2)}')
print(f'f1 gcn: {np.round(f1_gcn, 2)}')