Skip to content

Latest commit

 

History

History
34 lines (26 loc) · 2.48 KB

EVAL.md

File metadata and controls

34 lines (26 loc) · 2.48 KB

Open-Vocab LVIS evaluation

  • for evaluation of our proxydet models, download model first and execute evaluation script referred to below.
Name Backbone Training dataset mask mAP mask mAP_novel Download Evaluation
BoxSup-R50 ResNet50 LVIS 30.2 16.4 model -
ProxyDet-R50 (wo/ inl) ResNet50 LVIS 30.1 19.0 (+2.6) model script
Detic-R50 ResNet50 LVIS + IN-L 32.4 24.9 model -
ProxyDet-R50 (w/ inl) ResNet50 LVIS + IN-L 32.8 26.2 (+1.3) model script
Detic-SWINB SWIN-B LVIS + IN-L 40.7 33.8 model -
ProxyDet-SWINB (w/ inl) SWIN-B LVIS + IN-L 41.5 36.7 (+2.9) model script
  • for evaluation on non-pseudo-labeled novel classes, run:
LVIS_INSTASNCE_RESULT_FILE_PATH="YOUR_${LVIS_INSTASNCE_RESULT_FILE_PATH}"

cd tools && python category_wise_ap_lvis.py ${LVIS_INSTASNCE_RESULT_FILE_PATH}
  • AP result of ProxyDet-R50 (w/ inl) on pseudo-labeled novel classes / non-pseudo-labeled novel classes / all novel classes
frequency_group: rare, category_group: in_im
ap: 26.976
frequency_group: rare, category_group: not_in_im
ap: 22.998
frequency_group: rare, category_group: all
ap: 26.216