- ResNet-50 backbone: download LVIS-based pretrained BoxSup model checkpoint
wget https://dl.fbaipublicfiles.com/detic/BoxSup-C2_Lbase_CLIP_R5021k_640b64_4x.pth -O models/BoxSup-C2_Lbase_CLIP_R5021k_640b64_4x.pth
- Swin-B backbone: download LVIS-based pretrained BoxSup model checkpoint
wget https://dl.fbaipublicfiles.com/detic/BoxSup-C2_Lbase_CLIP_SwinB_896b32_4x.pth -O models/BoxSup-C2_Lbase_CLIP_SwinB_896b32_4x.pth
- download LVIS and COCO datasets, following here
- download ImageNet-LVIS, following here
- place all the datasets into
datasets
directory.
- for reproducibility, you should modify detectron2's sources by:
- for more details, please see here
# detectron2/layers/roi_align.py#L58
return roi_align(
input.half().double(),
rois.half().double(),
self.output_size,
self.spatial_scale,
self.sampling_ratio,
self.aligned,
).to(dtype=input.dtype)
training environment
---------------------- -----------------------------------------------------------------------
sys.platform linux
Python 3.8.10 (default, Jun 22 2022, 20:18:18) [GCC 9.4.0]
numpy 1.23.2
detectron2 0.6
Compiler GCC 9.4
CUDA compiler CUDA 11.3
detectron2 arch flags 7.0
DETECTRON2_ENV_MODULE <not set>
PyTorch 1.11.0+cu113
PyTorch debug build False
GPU available Yes
GPU 0,1,2,3,4,5,6,7 Tesla V100-SXM2-32GB (arch=7.0)
Driver version 515.48.07
CUDA_HOME /usr/local/cuda
Pillow 9.2.0
torchvision 0.12.0+cu113
torchvision arch flags 3.5, 5.0, 6.0, 7.0, 7.5, 8.0, 8.6
fvcore 0.1.5.post20220512
iopath 0.1.9
cv2 4.6.0
---------------------- -----------------------------------------------------------------------
PyTorch built with:
- GCC 7.3
- C++ Version: 201402
- Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v2.5.2 (Git Hash a9302535553c73243c632ad3c4c80beec3d19a1e)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 11.3
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86
- CuDNN 8.2
- Magma 2.5.2
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.2.0, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.11.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
- Note: training results might vary depending on the GPU devices & driver versions.
- to train our proxydet (ResNet-50 backbone) on LVIS + ImageNet-LVIS datasets, run
bash scripts/train/proxydet_r50_w_inl.sh
-
for training Swin-B backbone, run
bash scripts/train/proxydet_swinb_w_inl.sh