Skip to content

Latest commit

 

History

History
52 lines (39 loc) · 1.6 KB

README.md

File metadata and controls

52 lines (39 loc) · 1.6 KB

StatAssist & GradBoost: Classification

StatAssist & GradBoost: A Study on Optimal INT8 Quantization-aware Training from Scratch

Dataset

  • CIFAR10
  • CIFAR100
  • Imagenet_1K (ILSVRC2015)

Model

  • AlexNet
  • VGGNet
  • ResNet
  • ShuffleNetV2
  • MobileNetV2
  • MobileNetV3
  • MobileNetV3_ReLU

Run example

  • Train

Modify setting/train.json before run.

python train.py
  • Test

Modify setting/evaluate.json before run.

python evaluate.py

Latency Check Results (CPU) on Imagenet_1K

  • Measured using AMD Ryzen Threadripper 1950X 16-Core Processor, 4 thread & PyTorch 1.6.0
  • fbgemm
Model Params Flops Size (FP) Size(quantized) Latency(FP) Latency(quantized) Rate(%)
resnet18 11.68 M 1.82 B 46.81 MB 11.78 MB 366ms 245 ms -33.06
shufflenet_v2_x0_5 1.36 M 43.65 M 5.56 MB 1.48 MB 157 ms 89 ms -43.31
shufflenet_v2_x1_0 2.27 M 150.6 M 9.24 MB 2.44MB 255 ms 372 ms +45.88
mobilenet_v2_ReLU6 3.50 M 320.24 M 14.21 MB 3.58 MB 282 ms 143 ms -49.29
mobilenet_v2_ReLU 3.50 M 320.24 M 14.21 MB 3.58 MB 282 ms 112 ms -60.28
mobilenet_v3_large_HS 5.47 M 233.68 M 22.07 MB 5.81 MB 286 ms 160 ms -44.05
mobilenet_v3_small_HS 2.70 M 64.93 M 10.91 MB 2.92 MB 164 ms 99 ms -39.63
mobilenet_v3_large_ReLU 5.47 M 233.68 M 22.06 MB 5.57 MB 258 ms 131 ms -49.22
mobilenet_v3_small_ReLU 2.70 M 64.93 M 10.90 MB 2.77 MB 148 ms 79 ms -46.62