-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrain.py
359 lines (308 loc) · 16.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import argparse
import os
import torch
import torch.nn as nn
import torch.optim as optim
from utilities.utils import save_checkpoint, model_parameters, compute_flops
from utilities.train_eval_seg import train_seg as train
from utilities.train_eval_seg import val_seg as val
from utilities.lr_scheduler import get_lr_scheduler
#from torch.utils.tensorboard import SummaryWriter
from loss_fns.segmentation_loss import SegmentationLoss
import random
import math
import time
import numpy as np
from utilities.print_utils import *
from utilities.optimizer import *
from utilities.Tensor_logger import Logger
import torch.quantization
from torch.quantization.fake_quantize import FakeQuantize
def disable_observer(mod):
if type(mod) == FakeQuantize:
if mod.scale is not None and mod.zero_point is not None:
mod.disable_observer()
else:
pass
#print("Can't disable {} : scale or zero_point is None.".format(mod))
def main(args):
logdir = args.savedir+'/logs/'
if not os.path.isdir(logdir):
os.makedirs(logdir)
my_logger = Logger(60066, logdir)
if args.dataset == 'pascal':
crop_size = (512, 512)
args.scale = (0.5, 2.0)
elif args.dataset == 'city':
crop_size = (768, 768)
args.scale = (0.5, 2.0)
print_info_message('Running Model at image resolution {}x{} with batch size {}'.format(crop_size[1], crop_size[0], args.batch_size))
if not os.path.isdir(args.savedir):
os.makedirs(args.savedir)
if args.dataset == 'pascal':
from data_loader.segmentation.voc import VOCSegmentation, VOC_CLASS_LIST
train_dataset = VOCSegmentation(root=args.data_path, train=True, crop_size=crop_size, scale=args.scale,
coco_root_dir=args.coco_path)
val_dataset = VOCSegmentation(root=args.data_path, train=False, crop_size=crop_size, scale=args.scale)
seg_classes = len(VOC_CLASS_LIST)
class_wts = torch.ones(seg_classes)
elif args.dataset == 'city':
from data_loader.segmentation.cityscapes import CityscapesSegmentation, CITYSCAPE_CLASS_LIST
train_dataset = CityscapesSegmentation(root=args.data_path, train=True, size=crop_size, scale=args.scale, coarse=args.coarse)
val_dataset = CityscapesSegmentation(root=args.data_path, train=False, size=crop_size, scale=args.scale,
coarse=False)
seg_classes = len(CITYSCAPE_CLASS_LIST)
class_wts = torch.ones(seg_classes)
class_wts[0] = 2.8149201869965
class_wts[1] = 6.9850029945374
class_wts[2] = 3.7890393733978
class_wts[3] = 9.9428062438965
class_wts[4] = 9.7702074050903
class_wts[5] = 9.5110931396484
class_wts[6] = 10.311357498169
class_wts[7] = 10.026463508606
class_wts[8] = 4.6323022842407
class_wts[9] = 9.5608062744141
class_wts[10] = 7.8698215484619
class_wts[11] = 9.5168733596802
class_wts[12] = 10.373730659485
class_wts[13] = 6.6616044044495
class_wts[14] = 10.260489463806
class_wts[15] = 10.287888526917
class_wts[16] = 10.289801597595
class_wts[17] = 10.405355453491
class_wts[18] = 10.138095855713
class_wts[19] = 0.0
else:
print_error_message('Dataset: {} not yet supported'.format(args.dataset))
exit(-1)
print_info_message('Training samples: {}'.format(len(train_dataset)))
print_info_message('Validation samples: {}'.format(len(val_dataset)))
if args.model == 'espnetv2':
from model.espnetv2 import espnetv2_seg
args.classes = seg_classes
model = espnetv2_seg(args)
elif args.model == 'espnet':
from model.espnet import espnet_seg
args.classes = seg_classes
model = espnet_seg(args)
elif args.model == 'mobilenetv2_1_0':
from model.mobilenetv2 import get_mobilenet_v2_1_0_seg
args.classes = seg_classes
model = get_mobilenet_v2_1_0_seg(args)
elif args.model == 'mobilenetv2_0_35':
from model.mobilenetv2 import get_mobilenet_v2_0_35_seg
args.classes = seg_classes
model = get_mobilenet_v2_0_35_seg(args)
elif args.model == 'mobilenetv2_0_5':
from model.mobilenetv2 import get_mobilenet_v2_0_5_seg
args.classes = seg_classes
model = get_mobilenet_v2_0_5_seg(args)
elif args.model == 'mobilenetv3_small':
from model.mobilenetv3 import get_mobilenet_v3_small_seg
args.classes = seg_classes
model = get_mobilenet_v3_small_seg(args)
elif args.model == 'mobilenetv3_large':
from model.mobilenetv3 import get_mobilenet_v3_large_seg
args.classes = seg_classes
model = get_mobilenet_v3_large_seg(args)
elif args.model == 'mobilenetv3_RE_small':
from model.mobilenetv3 import get_mobilenet_v3_RE_small_seg
args.classes = seg_classes
model = get_mobilenet_v3_RE_small_seg(args)
elif args.model == 'mobilenetv3_RE_large':
from model.mobilenetv3 import get_mobilenet_v3_RE_large_seg
args.classes = seg_classes
model = get_mobilenet_v3_RE_large_seg(args)
else:
print_error_message('Arch: {} not yet supported'.format(args.model))
exit(-1)
num_gpus = torch.cuda.device_count()
device = 'cuda' if num_gpus > 0 else 'cpu'
train_params = []
params_dict = dict(model.named_parameters())
others= args.weight_decay*0.01
for key, value in params_dict.items():
if len(value.data.shape) == 4:
if value.data.shape[1] == 1:
train_params += [{'params': [value], 'lr': args.lr, 'weight_decay': 0.0}]
else:
train_params += [{'params': [value], 'lr': args.lr, 'weight_decay': args.weight_decay}]
else:
train_params += [{'params': [value],'lr': args.lr, 'weight_decay': others}]
args.learning_rate = args.lr
optimizer = get_optimizer(args.optimizer, train_params, args)
num_params = model_parameters(model)
flops = compute_flops(model, input=torch.Tensor(1, 3, crop_size[1], crop_size[0]))
print_info_message('FLOPs for an input of size {}x{}: {:.2f} million'.format(crop_size[1], crop_size[0], flops))
print_info_message('Network Parameters: {:.2f} million'.format(num_params))
start_epoch = 0
epochs_len = args.epochs
best_miou = 0.0
#criterion = nn.CrossEntropyLoss(weight=class_wts, reduction='none', ignore_index=args.ignore_idx)
criterion = SegmentationLoss(n_classes=seg_classes, loss_type=args.loss_type,
device=device, ignore_idx=args.ignore_idx,
class_wts=class_wts.to(device))
if num_gpus >= 1:
if num_gpus == 1:
# for a single GPU, we do not need DataParallel wrapper for Criteria.
# So, falling back to its internal wrapper
from torch.nn.parallel import DataParallel
model = DataParallel(model)
model = model.cuda()
criterion = criterion.cuda()
else:
from utilities.parallel_wrapper import DataParallelModel, DataParallelCriteria
model = DataParallelModel(model)
model = model.cuda()
criterion = DataParallelCriteria(criterion)
criterion = criterion.cuda()
if torch.backends.cudnn.is_available():
import torch.backends.cudnn as cudnn
cudnn.benchmark = True
cudnn.deterministic = True
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True,
pin_memory=True, num_workers=args.workers,drop_last=True)
if args.dataset == 'city':
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=1, shuffle=False,
pin_memory=True, num_workers=args.workers, drop_last=True)
else:
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False,
pin_memory=True, num_workers=args.workers, drop_last=True)
lr_scheduler = get_lr_scheduler(args)
print_info_message(lr_scheduler)
with open(args.savedir + os.sep + 'arguments.json', 'w') as outfile:
import json
arg_dict = vars(args)
arg_dict['model_params'] = '{} '.format(num_params)
arg_dict['flops'] = '{} '.format(flops)
json.dump(arg_dict, outfile)
extra_info_ckpt = '{}_{}_{}'.format(args.model, args.s, crop_size[0])
if args.fp_epochs > 0:
print_info_message("========== MODEL FP WARMUP ===========")
for epoch in range(args.fp_epochs):
lr = lr_scheduler.step(epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
print_info_message(
'Running epoch {} with learning rates: {:.6f}'.format(epoch, lr))
start_t = time.time()
miou_train, train_loss = train(model, train_loader, optimizer, criterion,
seg_classes, epoch, device=device)
if args.optimizer.startswith('Q'):
optimizer.is_warmup = False
print('exp_sensitivity calibration fin.')
if not args.fp_train:
model.module.quantized.fuse_model()
model.module.quantized.qconfig = torch.quantization.get_default_qat_qconfig('qnnpack')
torch.quantization.prepare_qat(model.module.quantized, inplace=True)
if args.resume:
start_epoch = args.start_epoch
if os.path.isfile(args.resume):
print_info_message('Loading weights from {}'.format(args.resume))
weight_dict = torch.load(args.resume, device)
model.module.load_state_dict(weight_dict)
print_info_message('Done')
else:
print_warning_message('No file for resume. Please check.')
for epoch in range(start_epoch, args.epochs):
lr = lr_scheduler.step(epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
print_info_message(
'Running epoch {} with learning rates: {:.6f}'.format(epoch, lr))
miou_train, train_loss = train(model, train_loader, optimizer, criterion, seg_classes, epoch, device=device)
miou_val, val_loss = val(model, val_loader, criterion, seg_classes, device=device)
# remember best miou and save checkpoint
is_best = miou_val > best_miou
best_miou = max(miou_val, best_miou)
weights_dict = model.module.state_dict() if device == 'cuda' else model.state_dict()
save_checkpoint({
'epoch': epoch + 1,
'arch': args.model,
'state_dict': weights_dict,
'best_miou': best_miou,
'optimizer': optimizer.state_dict(),
}, is_best, args.savedir, extra_info_ckpt)
if is_best:
model_file_name = args.savedir + '/model_' + str(epoch + 1) + '.pth'
torch.save(weights_dict, model_file_name)
print('weights saved in {}'.format(model_file_name))
info = {
'Segmentation/LR': round(lr, 6),
'Segmentation/Loss/train': train_loss,
'Segmentation/Loss/val': val_loss,
'Segmentation/mIOU/train': miou_train,
'Segmentation/mIOU/val': miou_val,
'Segmentation/Complexity/Flops': best_miou,
'Segmentation/Complexity/Params': best_miou,
}
for tag, value in info.items():
if tag == 'Segmentation/Complexity/Flops':
my_logger.scalar_summary(tag, value, math.ceil(flops))
elif tag == 'Segmentation/Complexity/Params':
my_logger.scalar_summary(tag, value, math.ceil(num_params))
else:
my_logger.scalar_summary(tag, value, epoch + 1)
print_info_message("========== TRAINING FINISHED ===========")
if __name__ == "__main__":
from commons.general_details import segmentation_models, segmentation_schedulers, segmentation_loss_fns, \
segmentation_datasets
parser = argparse.ArgumentParser()
parser.add_argument('--resume', type=str, default=None, help='path to checkpoint to resume from')
parser.add_argument('--start_epoch', type=int, default=0, help='epoch resume from')
parser.add_argument('--workers', type=int, default=4, help='number of data loading workers')
parser.add_argument('--ignore_idx', type=int, default=255, help='Index or label to be ignored during training')
parser.add_argument('--fp_train', action='store_true', default=False, help='Train model in FP mode')
# dataset and result directories
parser.add_argument('--dataset', type=str, default='pascal', choices=segmentation_datasets, help='Datasets')
parser.add_argument('--data_path', type=str, default='', help='dataset path')
parser.add_argument('--coco_path', type=str, default='', help='MS COCO dataset path')
parser.add_argument('--savedir', type=str, default='./results_segmentation', help='Location to save the results')
## only for cityscapes
parser.add_argument('--coarse', action='store_true', default=False, help='Want to use coarse annotations or not')
# scheduler details
parser.add_argument('--optimizer', default='QSGD',
help='Optimizers')
parser.add_argument('--nesterov', action='store_true', default=True, help='nesterov')
parser.add_argument('--amsgrad', action='store_true', default=False, help='amsgrad')
parser.add_argument('--clip_by', default=1e-3, type=float, help='clip_by')
parser.add_argument('--noise_decay', default=1e-2, type=float, help='noise_decay')
parser.add_argument('--toss_coin', action='store_true', default=True, help='toss_coin')
parser.add_argument('--scheduler', default='hybrid', choices=segmentation_schedulers,
help='Learning rate scheduler (fixed, clr, poly)')
parser.add_argument('--epochs', type=int, default=100, help='num of training epochs')
parser.add_argument('--step_size', default=51, type=int, help='steps at which lr should be decreased')
parser.add_argument('--lr', default=1e-2, type=float, help='initial learning rate')
parser.add_argument('--lr_mult', default=1e-2, type=float, help='initial learning rate')
parser.add_argument('--lr_decay', default=0.5, type=float, help='factor by which lr should be decreased')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--weight_decay', default=4e-5, type=float, help='weight decay (default: 4e-5)')
# for Polynomial LR
parser.add_argument('--power', default=0.9, type=float, help='power factor for Polynomial LR')
# for hybrid LR
parser.add_argument('--clr_max', default=61, type=int, help='Max number of epochs for cylic LR before '
'changing last cycle to linear')
parser.add_argument('--cycle_len', default=5, type=int, help='Duration of cycle')
# input details
parser.add_argument('--batch_size', type=int, default=40, help='list of batch sizes')
parser.add_argument('--crop_size', type=int, nargs='+', default=[256, 256],
help='list of image crop sizes, with each item storing the crop size (should be a tuple).')
parser.add_argument('--loss_type', default='ce', choices=segmentation_loss_fns, help='Loss function (ce or miou)')
# model related params
parser.add_argument('--s', type=float, default=2.0, help='Factor by which channels will be scaled')
parser.add_argument('--model', default='espnetv2', choices=segmentation_models,
help='Which model? basic= basic CNN model, res=resnet style)')
parser.add_argument('--channels', default=3, type=int, help='Input channels')
parser.add_argument('--num_classes', default=1000, type=int,
help='ImageNet classes. Required for loading the base network')
parser.add_argument('--model_width', default=224, type=int, help='Model width')
parser.add_argument('--model_height', default=224, type=int, help='Model height')
parser.add_argument('--fp_epochs', default=1, type=int, help='FP warmup epoch')
args = parser.parse_args()
random.seed(1882)
torch.manual_seed(1882)
assert args.data_path != '', 'Dataset path is an empty string. Please check.'
timestr = time.strftime("%Y%m%d-%H%M%S")
args.savedir = '{}/model_{}_{}/sch_{}_loss_{}/{}'.format(args.savedir, args.model, args.dataset, args.scheduler, args.loss_type, timestr)
main(args)