-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path11_20.tex
567 lines (518 loc) · 21 KB
/
11_20.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
\documentclass[10pt,letterpaper]{article}
\usepackage[utf8]{inputenc}
\usepackage[intlimits]{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{ragged2e}
\usepackage[letterpaper, margin=0.5in]{geometry}
\usepackage{graphicx}
\usepackage{cancel}
\usepackage{mathtools}
\usepackage{tabularx}
\usepackage{arydshln}
\usepackage{tensor}
\usepackage{array}
\usepackage{xcolor}
\usepackage[boxed]{algorithm}
\usepackage[noend]{algpseudocode}
\usepackage{listings}
\usepackage{textcomp}
% \usepackage[pdf,tmpdir,singlefile]{graphviz}
\usepackage{mathrsfs}
\usepackage{bbm}
\usepackage{tikz}
\usepackage{tikz-cd}
\usepackage{enumitem}
\usepackage{arydshln}
\usepackage{relsize}
\usepackage{multicol}
\usepackage{scalerel}
\usepackage{upgreek}
\usepackage{wasysym}
\usepackage{ifthen}
\usetikzlibrary{bayesnet}
\setlist{noitemsep}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Formatting commands
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\n}{\hfill\break}
\newcommand{\nn}{\vspace{0.5\baselineskip}\n}
\newcommand{\up}{\vspace{-\baselineskip}}
\newcommand{\hangblock}[2]{\par\noindent\settowidth{\hangindent}{\textbf{#1: }}\textbf{#1: }\nolinebreak#2}
\newcommand{\lemma}[1]{\hangblock{Lemma}{#1}}
\newcommand{\defn}[1]{\hangblock{Defn}{#1}}
\newcommand{\thm}[1]{\hangblock{Thm}{#1}}
\newcommand{\cor}[1]{\hangblock{Cor}{#1}}
\newcommand{\prop}[1]{\hangblock{Prop}{#1}}
\newcommand{\ex}[1]{\hangblock{Ex}{#1}}
\newcommand{\exer}[1]{\hangblock{Exer}{#1}}
\newcommand{\fact}[1]{\hangblock{Fact}{#1}}
\newcommand{\remark}[1]{\hangblock{Remark}{#1}}
\newcommand{\proven}{\;$\square$\n}
\newcommand{\problem}[1]{\par\noindent{\nolinebreak#1}\n}
\newcommand{\problempart}[2]{\par\noindent\indent{}\settowidth{\hangindent}{\textbf{(#1)} \indent{}}\textbf{(#1) }\nolinebreak#2\n}
\newcommand{\ptxt}[1]{\textrm{\textnormal{#1}}}
\newcommand{\inlineeq}[1]{\centerline{$\displaystyle #1$}}
\newcommand{\pageline}{\up\par\noindent\rule{\textwidth}{0.1pt}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Math commands
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Set Theory
\newcommand{\card}[1]{\left|#1\right|}
\newcommand{\set}[1]{\left\{#1\right\}}
\newcommand{\setmid}{\;\middle|\;}
\newcommand{\ps}[1]{\mathcal{P}\left(#1\right)}
\newcommand{\pfinite}[1]{\mathcal{P}^{\ptxt{finite}}\left(#1\right)}
\newcommand{\naturals}{\mathbb{N}}
\newcommand{\N}{\naturals}
\newcommand{\integers}{\mathbb{Z}}
\newcommand{\Z}{\integers}
\newcommand{\rationals}{\mathbb{Q}}
\newcommand{\Q}{\rationals}
\newcommand{\reals}{\mathbb{R}}
\newcommand{\R}{\reals}
\newcommand{\complex}{\mathbb{C}}
\newcommand{\C}{\complex}
\newcommand{\halfPlane}{\mathbb{H}}
\let\HSym\H
\let\H\relax
\newcommand{\H}{\halfPlane}
\newcommand{\comp}{^{\complement}}
\DeclareMathOperator{\Hom}{Hom}
\newcommand{\Ind}{\mathbbm{1}}
\newcommand{\cut}{\setminus}
\DeclareMathOperator{\elem}{elem}
% Differentiable Manifolds
\newcommand{\RP}{\mathbb{RP}}
\newcommand{\CP}{\mathbb{RP}}
\newcommand{\osubset}{\overset{\mathclap{\scalebox{0.5}{\ptxt{open}}}}{\subset}}
\newcommand{\osubseteq}{\overset{\mathclap{\scalebox{0.5}{\ptxt{open}}}}{\subseteq}}
\newcommand{\osupset}{\overset{\mathclap{\scalebox{0.5}{\ptxt{open}}}}{\supset}}
\newcommand{\osupseteq}{\overset{\mathclap{\scalebox{0.5}{\ptxt{open}}}}{\supseteq}}
\newcommand{\pdat}[3]{\left.\pd{#1}{#2}\right|_{#3}}
\DeclareMathOperator{\so}{so}
\DeclareMathOperator{\codim}{codim}
\DeclareMathOperator{\Diff}{Diff}
\let\dSym\d
\let\d\relax
\newcommand{\d}{\partial}
\DeclareMathOperator{\gl}{gl}
% Graph Theory
\let\deg\relax
\DeclareMathOperator{\deg}{deg}
\newcommand{\degp}{\ptxt{deg}^{+}}
\newcommand{\degn}{\ptxt{deg}^{-}}
\newcommand{\precdot}{\mathrel{\ooalign{$\prec$\cr\hidewidth\hbox{$\cdot\mkern0.5mu$}\cr}}}
\newcommand{\succdot}{\mathrel{\ooalign{$\cdot\mkern0.5mu$\cr\hidewidth\hbox{$\succ$}\cr\phantom{$\succ$}}}}
\DeclareMathOperator{\cl}{cl}
\DeclareMathOperator{\affdim}{affdim}
% Probability
\newcommand{\parSymbol}{\P}
\newcommand{\Prob}{\mathbb{P}}
\renewcommand{\P}{\Prob}
\newcommand{\Avg}{\mathbb{E}}
\newcommand{\E}{\Avg}
\DeclareMathOperator{\Var}{Var}
\DeclareMathOperator{\cov}{cov}
\DeclareMathOperator{\Unif}{Unif}
\DeclareMathOperator{\Binom}{Binom}
\newcommand{\CI}{\mathrel{\text{\scalebox{1.07}{$\perp\mkern-10mu\perp$}}}}
% Standard Math
\newcommand{\inv}{^{-1}}
\newcommand{\abs}[1]{\left|#1\right|}
\newcommand{\ceil}[1]{\left\lceil{}#1\right\rceil{}}
\newcommand{\floor}[1]{\left\lfloor{}#1\right\rfloor{}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\of}{\circ}
\newcommand{\tri}{\triangle}
\newcommand{\inj}{\hookrightarrow}
\newcommand{\surj}{\twoheadrightarrow}
\newcommand{\ndiv}{\nmid}
\renewcommand{\epsilon}{\varepsilon}
\newcommand{\divides}{\mid}
\newcommand{\ndivides}{\nmid}
\DeclareMathOperator{\lcm}{lcm}
\DeclareMathOperator{\sgn}{sgn}
\newcommand{\map}[4]{\!\!\!\begin{array}[t]{rcl}#1 & \!\!\!\!\to & \!\!\!\!#2\\ {}#3 & \!\!\!\!\mapsto & \!\!\!\!#4\end{array}}
\newcommand{\bigsum}[2]{\smashoperator[lr]{\sum_{\scalebox{#1}{$#2$}}}}
\DeclareMathOperator{\gcf}{gcf}
\newcommand{\restr}[2]{\left.#1\right|_{#2}}
% Linear Algebra
\newcommand{\Id}{\textrm{\textnormal{Id}}}
\newcommand{\im}{\textrm{\textnormal{im}}}
\newcommand{\norm}[1]{\abs{\abs{#1}}}
\newcommand{\tpose}{^{T}\!}
\newcommand{\iprod}[1]{\left<#1\right>}
\newcommand{\giprod}{\iprod{\;\,,\;}}
\DeclareMathOperator{\tr}{tr}
\DeclareMathOperator{\trace}{tr}
\newcommand{\chgBasMat}[3]{\!\!\tensor*[_{#1}]{\left[#2\right]}{_{#3}}}
\newcommand{\vecBas}[2]{\tensor*[]{\left[#1\right]}{_{#2}}}
\DeclareMathOperator{\GL}{GL}
\DeclareMathOperator{\Mat}{Mat}
\DeclareMathOperator{\vspan}{span}
\DeclareMathOperator{\rank}{rank}
\newcommand{\V}[1]{\vec{#1}}
\DeclareMathOperator{\proj}{proj}
\DeclareMathOperator{\compProj}{comp}
\DeclareMathOperator{\row}{row}
\newcommand{\smallPMatrix}[1]{\paren{\begin{smallmatrix}#1\end{smallmatrix}}}
\newcommand{\smallBMatrix}[1]{\brack{\begin{smallmatrix}#1\end{smallmatrix}}}
\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}
\newcommand{\bmat}[1]{\begin{bmatrix}#1\end{bmatrix}}
\newcommand{\dual}{^{*}}
\newcommand{\pinv}{^{\dagger}}
\newcommand{\horizontalMatrixLine}{\ptxt{\rotatebox[origin=c]{-90}{$|$}}}
\DeclareMathOperator{\range}{range}
\DeclareMathOperator{\Symm}{Symm}
\DeclareMathOperator{\SU}{SU}
% Multilinear Algebra
\let\Lsym\L
\let\L\relax
\DeclareMathOperator{\L}{\mathscr{L}}
\DeclareMathOperator{\A}{\mathcal{A}}
\DeclareMathOperator{\Alt}{Alt}
\DeclareMathOperator{\Sym}{Sym}
\newcommand{\ot}{\otimes}
\newcommand{\ox}{\otimes}
\DeclareMathOperator{\asc}{asc}
\DeclareMathOperator{\asSet}{set}
\DeclareMathOperator{\sort}{sort}
\DeclareMathOperator{\ringA}{\mathring{A}}
\DeclareMathOperator{\Sh}{Sh}
% Topology
\newcommand{\closure}[1]{\overline{#1}}
\newcommand{\uball}{\mathcal{U}}
\DeclareMathOperator{\Int}{Int}
\DeclareMathOperator{\Ext}{Ext}
\DeclareMathOperator{\Bd}{Bd}
\DeclareMathOperator{\rInt}{rInt}
\DeclareMathOperator{\ch}{ch}
\DeclareMathOperator{\ah}{ah}
\newcommand{\LargerTau}{\mathlarger{\mathlarger{\mathlarger{\mathlarger{\tau}}}}}
\newcommand{\Tau}{\mathcal{T}}
% Analysis
\DeclareMathOperator{\Graph}{Graph}
\DeclareMathOperator{\epi}{epi}
\DeclareMathOperator{\hypo}{hypo}
\DeclareMathOperator{\supp}{supp}
\newcommand{\lint}[2]{\underset{#1}{\overset{#2}{{\color{black}\underline{{\color{white}\overline{{\color{black}\int}}\color{black}}}}}}}
\newcommand{\uint}[2]{\underset{#1}{\overset{#2}{{\color{white}\underline{{\color{black}\overline{{\color{black}\int}}\color{black}}}}}}}
\newcommand{\alignint}[2]{\underset{#1}{\overset{#2}{{\color{white}\underline{{\color{white}\overline{{\color{black}\int}}\color{black}}}}}}}
\newcommand{\extint}{\ptxt{ext}\int}
\newcommand{\extalignint}[2]{\ptxt{ext}\alignint{#1}{#2}}
\newcommand{\conv}{\ast}
\newcommand{\pd}[2]{\frac{\partial{}#1}{\partial{}#2}}
\newcommand{\del}{\nabla}
\DeclareMathOperator{\grad}{grad}
\DeclareMathOperator{\curl}{curl}
\let\div\relax
\DeclareMathOperator{\div}{div}
\DeclareMathOperator{\vol}{vol}
% Complex Analysis
\let\Re\relax
\DeclareMathOperator{\Re}{Re}
\let\Im\relax
\DeclareMathOperator{\Im}{Im}
\DeclareMathOperator{\Res}{Res}
% Abstract Algebra
\DeclareMathOperator{\ord}{ord}
\newcommand{\generated}[1]{\left<#1\right>}
\newcommand{\cycle}[1]{\smallPMatrix{#1}}
\newcommand{\id}{\ptxt{id}}
\newcommand{\iso}{\cong}
\DeclareMathOperator{\Aut}{Aut}
\DeclareMathOperator{\SL}{SL}
\DeclareMathOperator{\op}{op}
\newcommand{\isom}[4]{\!\!\!\begin{array}[t]{rcl}#1 & \!\!\!\!\overset{\sim}{\to} & \!\!\!\!#2\\ #3 & \!\!\!\!\mapsto & \!\!\!\!#4\end{array}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\acts}{\;\reflectbox{\rotatebox[origin=c]{-90}{$\circlearrowright$}}\;}
\newcommand{\disjunion}{\mathrel{\text{\scalebox{1.07}{$\perp\mkern-10mu\perp$}}}}
\DeclareMathOperator{\SO}{SO}
\DeclareMathOperator{\stab}{stab}
\DeclareMathOperator{\nullity}{nullity}
\DeclareMathOperator{\Perm}{Perm}
\DeclareMathOperator{\nsubgp}{\vartriangleleft}
\DeclareMathOperator{\notnsubgp}{\ntriangleleft}
\newcommand{\presentation}[2]{\left<#1\;\middle|\;#2\right>}
\DeclareMathOperator{\Char}{char}
\DeclareMathOperator{\fchar}{char}
\DeclareMathOperator{\triv}{triv}
\DeclareMathOperator{\reg}{reg}
\DeclareMathOperator{\std}{std}
\DeclareMathOperator{\Func}{Func}
\DeclareMathOperator{\End}{End}
% Convex Optimization
\let\sectionSymbol\S
\let\S\relax
\newcommand{\S}{\mathbb{S}}
\DeclareMathOperator{\dist}{dist}
\DeclareMathOperator{\dom}{dom}
\DeclareMathOperator{\diag}{diag}
\DeclareMathOperator{\ones}{\mathbbm{1}}
\newcommand{\minimizeOver}[3]{\begin{array}{rl}\underset{#1}{\ptxt{minimize}} & #2\\ \ptxt{subject to} & #3\end{array}}
\newcommand{\maximizeOver}[3]{\begin{array}{rl}\underset{#1}{\ptxt{maximize}} & #2\\ \ptxt{subject to} & #3\end{array}}
\newcommand{\minimizationProblem}[2]{\minimizeOver{}{#1}{#2}}
\newcommand{\maximizationProblem}[2]{\maximizeOver{}{#1}{#2}}
\newcommand{\minimizeOverUnconstrained}[2]{\begin{array}{rl}\underset{#1}{\ptxt{minimize}} & #2\end{array}}
\newcommand{\maximizeOverUnconstrained}[2]{\begin{array}{rl}\underset{#1}{\ptxt{maximize}} & #2\end{array}}
\newcommand{\minimizationUnconstrained}[1]{\minimizeOverUnconstrained{}{#1}}
\newcommand{\maximizationUnconstrained}[1]{\maximizeOverUnconstrained{}{#1}}
\DeclareMathOperator{\argmin}{argmin}
\DeclareMathOperator{\argmax}{argmax}
% Proofs
\newcommand{\st}{s.t.}
\newcommand{\unique}{!}
\newcommand{\iffdef}{\overset{\ptxt{def}}{\Leftrightarrow}}
\newcommand{\eqVertical}{\rotatebox[origin=c]{90}{=}}
\newcommand{\mapsfrom}{\mathrel{\reflectbox{\ensuremath{\mapsto}}}}
\newcommand{\mapsdown}{\rotatebox[origin=c]{-90}{$\mapsto$}\mkern2mu}
\newcommand{\mapsup}{\rotatebox[origin=c]{90}{$\mapsto$}\mkern2mu}
\newcommand{\from}{\!\mathrel{\reflectbox{\ensuremath{\to}}}}
\newcommand{\labeledeq}[1]{\overset{\mathclap{\ptxt{#1}}}{=}}
\newcommand{\eqdef}{\labeledeq{def}}
% Brackets
\newcommand{\paren}[1]{\left(#1\right)}
\renewcommand{\brack}[1]{\left[#1\right]}
\renewcommand{\brace}[1]{\left\{#1\right\}}
\newcommand{\ang}[1]{\left<#1\right>}
% Algorithms
\algrenewcommand{\algorithmiccomment}[1]{\hskip 1em \texttt{// #1}}
\algrenewcommand\algorithmicrequire{\textbf{Input:}}
\algrenewcommand\algorithmicensure{\textbf{Output:}}
\newcommand{\algP}{\ptxt{\textbf{P}}}
\newcommand{\algNP}{\ptxt{\textbf{NP}}}
\newcommand{\algNPC}{\ptxt{\textbf{NP-Complete}}}
\newcommand{\algNPH}{\ptxt{\textbf{NP-Hard}}}
\newcommand{\algEXP}{\ptxt{\textbf{EXP}}}
\DeclareMathOperator{\fl}{fl}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Other commands
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newcommand{\flag}[1]{\textbf{\textcolor{red}{#1}}}
\let\uSym\u
\let\u\relax
\newcommand{\u}[1]{\underline{#1}}
\let\bSym\b
\let\b\relax
\newcommand{\b}[1]{\textbf{#1}}
\let\iSym\i
\let\i\relax
\newcommand{\i}[1]{\textit{#1}}
\let\scSym\sc
\let\sc\relax
\newcommand{\sc}[1]{\textsc{#1}}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Make l's curvy in math environments %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mathcode`l="8000
\begingroup
\makeatletter
\lccode`\~=`\l
\DeclareMathSymbol{\lsb@l}{\mathalpha}{letters}{`l}
\lowercase{\gdef~{\ifnum\the\mathgroup=\m@ne \ell \else \lsb@l \fi}}%
\endgroup
%%%%%%%%%%%%%%%%%%%%%%%%%
% Fix \vdots and \ddots %
%%%%%%%%%%%%%%%%%%%%%%%%%
\usepackage{letltxmacro}
\LetLtxMacro\orgvdots\vdots
\LetLtxMacro\orgddots\ddots
\makeatletter
\DeclareRobustCommand\vdots{%
\mathpalette\@vdots{}%
}
\newcommand*{\@vdots}[2]{%
% #1: math style
% #2: unused
\sbox0{$#1\cdotp\cdotp\cdotp\m@th$}%
\sbox2{$#1.\m@th$}%
\vbox{%
\dimen@=\wd0 %
\advance\dimen@ -3\ht2 %
\kern.5\dimen@
% remove side bearings
\dimen@=\wd2 %
\advance\dimen@ -\ht2 %
\dimen2=\wd0 %
\advance\dimen2 -\dimen@
\vbox to \dimen2{%
\offinterlineskip
\copy2 \vfill\copy2 \vfill\copy2 %
}%
}%
}
\DeclareRobustCommand\ddots{%
\mathinner{%
\mathpalette\@ddots{}%
\mkern\thinmuskip
}%
}
\newcommand*{\@ddots}[2]{%
% #1: math style
% #2: unused
\sbox0{$#1\cdotp\cdotp\cdotp\m@th$}%
\sbox2{$#1.\m@th$}%
\vbox{%
\dimen@=\wd0 %
\advance\dimen@ -3\ht2 %
\kern.5\dimen@
% remove side bearings
\dimen@=\wd2 %
\advance\dimen@ -\ht2 %
\dimen2=\wd0 %
\advance\dimen2 -\dimen@
\vbox to \dimen2{%
\offinterlineskip
\hbox{$#1\mathpunct{.}\m@th$}%
\vfill
\hbox{$#1\mathpunct{\kern\wd2}\mathpunct{.}\m@th$}%
\vfill
\hbox{$#1\mathpunct{\kern\wd2}\mathpunct{\kern\wd2}\mathpunct{.}\m@th$}%
}%
}%
}
\makeatother
\newcommand{\B}{
\begin{tikzpicture}
\filldraw [fill=red, draw=black] (0, 0) rectangle (0.37, 0.45);
\draw [line width=0.5mm, white ] (0.1,0.08) -- (0.1,0.38);
\draw[line width=0.5mm, white ] (0.1, 0.35) .. controls (0.2, 0.35) and (0.4, 0.2625) .. (0.1, 0.225);
\draw[line width=0.5mm, white ] (0.1, 0.225) .. controls (0.2, 0.225) and (0.4, 0.1625) .. (0.1, 0.1);
\end{tikzpicture}
}
% Allow custom symbols as arrows in tikz-cd
\tikzset{
symbol/.style={
draw=none,
every to/.append style={
edge node={node [sloped, allow upside down, auto=false]{$#1$}}}
}
}
% Example: \arrow[r,symbol=\cong]
% https://tex.stackexchange.com/questions/394154/how-to-include-inclusion-subgroup-relationship-in-tikz-cd-diagram
\author{Professor Alejandro Uribe-Ahumada\\ \small\i{Transcribed by Thomas Cohn}}
\title{Math 591 Lecture 34}
\date{11/20/20} % Can also use \today
\begin{document}
\maketitle
\setlength\RaggedRightParindent{\parindent}
\RaggedRight
\section*{Lie Derivatives of Forms}
\ex{
Let $X=\ang{F^{1},\ldots,F^{n}}\in\mathfrak{X}(\R^{n})$, $\mu=dx^{1}\wedge\cdots\wedge{}dx^{n}$, and $\phi$ the flow of $X$. Then
\[
\mathcal{L}_{X}(\mu)=\restr{\frac{d}{dt}\phi_{t}^{*}\mu}{t=0}
\]
Well, $\phi_{t}^{*}\mu=\det(J(\phi_{t})_{*})\mu$, so
\[
\restr{\det(J(\phi_{t})_{*})}{t=0}=\tr\paren{\restr{\vphantom{\frac{d}{dt}}\smash{\underbrace{\frac{d}{dt\vphantom{a_{b_{c}}}}J(\phi_{t})_{*}}_{\star}}}{t=0}}\underbrace{\det(\phi_{t=0})}_{=1}
\]
For $\star$, do $\frac{d}{dt}$ first, and then $\pd{}{x^{i}}$. And $\det(\phi_{t=0})=1$, because $\phi_{t}$ is the flow of $X$, so $\frac{d}{dt}$ is just $X$. Thus, we have
\[
\tr \begin{pmatrix}
\horizontalMatrixLine & \del{}F_{1} & \horizontalMatrixLine\\
& \vdots\\
\horizontalMatrixLine & \del{}F_{n} & \horizontalMatrixLine
\end{pmatrix}=\sum_{j=1}^{n}\pd{F_{j}}{x^{j}}=\div(X)
\]
We conclude that $\mathcal{L}_{X}\mu=(\div{}X)\mu$.\proven
}
\thm{
(Cartan's Magic Formula) $\mathcal{L}_{X}=\iota_{X}\of{}d+d\of\iota_{X}:\Omega^{k}\to\Omega^{k}$.\nn
Proof: Let $P_{X}=\iota_{X}\of{}d-d\of\iota_{X}$. Then $P_{X}$ has the following properties:
\begin{enumerate}[leftmargin=4\parindent, topsep=0pt, itemsep=0pt, label=\arabic*)]
\item $\R$-linearity
\item It's a derivation w.r.t. $\wedge$: $P_{X}(\alpha\wedge\beta)=P_{X}(\alpha)\wedge\beta+\alpha\wedge{}P_{X}(\beta)$
\item It commutes with $d$
\item $f\in{}C^{\infty}(M)\Rightarrow{}P_{X}(f)=X(f)$
\item $P_{X}$ is local
\end{enumerate}\up\n
These properties belong to a unique operator. (Compute in coordinates, and by linearity, just use monomials.)
\[
P_{X}(a\,dx^{I})=P_{X}(a)\wedge{}dx^{I}+a\wedge{}P_{X}(dx^{I})=X(a)\,dx^{I}+aP_{X}(dx^{I})
\]
We then expand $P_{X}(dx^{I})$ with induction.\proven
}
\ex{
For $k=2$:
\[
P_{X}(dx^{1}\wedge{}dx^{2})=P_{X}(dx^{1})\wedge{}dx^{2}+dx^{1}\wedge{}P(dx^{2})=dX(x^{1})\wedge{}dx^{2}+dx^{1}\wedge{}dX(x^{2})
\]
This is unique, and it just uses the five properties.\n
}
\subsection*{Applications of Cartan's Formula}
\defn{
A \u{symplectic manifold} is a pair $(M,\omega)$, with $M$ a manifold, and $\omega\in\Omega^{2}(M)$ such that
\begin{enumerate}[leftmargin=4\parindent, topsep=0pt, itemsep=0pt, label=\arabic*)]
\item $\forall{}p\in{}M,v\in{}T_{p}M\cut\set{0}$, $\iota_{v}(\omega_{p})=\omega_{p}(v,\cdot):T_{p}M\to\R$ is nonzero.
\item $d\omega=0$.
\end{enumerate}\up\n
}
\par\noindent
Question: What are the symmetries of a symplectic manifold $(M,\omega)$? Specifically, are there one-parameter groups $\varphi_{t}:M\to{}M$ such that $\forall{}t$, $\varphi_{t}^{*}\omega=\omega$?\n
Use the Lie derivative: If $X\in\mathfrak{X}(M)$ is the generator of $\varphi_{t}$, then
\[
\varphi_{t}^{*}\omega=\omega\Leftrightarrow\mathcal{L}_{X}\omega=0\Leftrightarrow\iota_{X}\underbrace{d\omega}_{=0}+d\iota_{X}\omega=0\Leftrightarrow{}d\iota_{X}\omega=0
\]
\defn{
One particular class of such $X$'s comes from the following: Take any function $H\in{}C^{\infty}(M)$, and define $X$ by $\iota_{X}\omega=-dH$. By non-degeneracy of $\omega$, $X$ is unique! And,
\[
\map{T_{p}M}{T_{p}^{*}M}{v}{\iota_{v}\omega}
\]
has no kernel, so it's a bijection. This $X$ is called the \u{Hamilton field} of $H$.\n
}
\exer{
Take $M=\R^{2n}$ with coordinates $(x,p)$, where $x$ and $p$ are the standard coordinates in $\R^{n}$. Let
\[
\omega=\sum_{i=1}^{n}dp^{i}\wedge{}dx^{i}\qquad{}H=\frac{1}{2}\norm{p}^{2}+V(x)
\]
Compute the Hamilton field, and show that the integral curves satisfy $\ddot{x}(t)=-\del{}V(x(t))$. This is better known as Newton's second law!\n
}
\par\noindent
We're now done with Lie derivatives.
\section*{Integration of Forms on Oriented Manifolds}
\par\noindent
First, we have to define orientation. Let $V$ be an $n$-dimensional vector space. Let $\mathscr{B}(V)$ be the set of all ordered bases of $V$. For $e\in\mathscr{B}$, $e=(e_{1},\ldots,e_{n})$ is an ordered basis of $V$. Observe: $\forall{}e,f\in\mathscr{B}$, $\exists\unique{}M\in\GL(n,\R)$ such that $\forall{}i$, $e_{i}=Mf_{i}$.\n
\defn{
$e\sim{}f\Leftrightarrow\det{}M>0$. We say $e$ and $f$ define the same orientation of $V$.\n
}
\par\noindent
Check:
\begin{enumerate}[topsep=0pt, itemsep=0pt, label=\arabic*)]
\item $\sim$ is an equivalence relation
\item $\mathscr{B}/\sim$ has two elements
\end{enumerate}\up\n
\defn{
An \u{orientation} of $V$ is a choice of an equivalence class in $\mathscr{B}/\sim$. Bases in that equivalence class are said to be \u{positive}.\n
}
\par\noindent
Alternatively, consider the set of nonzero top-degree forms, $\underbrace{\paren{{\bigwedge}^{n}V}}_{\dim=1}\cut\set{0}$. When we take away $0$, any $\mu\in\paren{{\bigwedge}^{n}V}\cut\set{0}$ defines an orientation by: a basis $e$ is positive iff $\mu(e)>0$. The orientation defined by $\mu$ only depends on which connected component of $\paren{\bigwedge^{n}V}\cut\set{0}$ contains $\mu$. Conversely, an orientation singles out one of the two components of $\paren{\bigwedge^{n}V}\cut\set{0}$.\n
\par\noindent
Conclusion: An orientation is a choice of a connected component of $\paren{\bigwedge^{n}V}\cut\set{0}$.\n
\par\noindent
Now, we move on to manifolds! Note: Not all manifolds are orientable (e.g. the Mobius band).\n
\defn{
An \u{orientation} on $M$ (if it exists) is a continuous choice of orientation of each tangent space.\n
}
\par\noindent
Continuity means $\forall{}p\in{}M$, there exists a continuous moving frame $(E_{1},\ldots,E_{n})$ such that at every point $q$ in the domain of $E$, $(E_{1}(q),\ldots,E_{n}(q))$ is a positive basis of $T_{q}M$.\n
\lemma{
A connected manifold can have either two orientations, or it's non-orientable.\nn
Proof: The idea is if the manifold is orientable, then consider orientations $\mathscr{O}_{1}$ and $\mathscr{O}_{2}$. Define $F:M\to\R$ by $f(p)=1$ if $\mathscr{O}_{1}(p)=\mathscr{O}_{2}(p)$, and $0$ otherwise. (Note: we don't really ever use this notation.) Then by the continuity of $\mathscr{O}_{1}$ and $\mathscr{O}_{2}$, $f$ is continuous, so $f$ is locally constant, so if $M$ is connected, then $f$ is constant.\proven
}
\defn{
Let $M$ be an oriented manifold. Then a \u{positive atlas} on $M$ is an atlas $\set{(U_{\alpha},\phi_{\alpha})}$ of $M$ such that $\forall\alpha$, the moving frame $\paren{\pd{}{x^{1}_{\alpha}},\ldots,\pd{}{x^{n}_{\alpha}}}$ is a positive frame.\n
}
\newpage
\lemma{
\begin{enumerate}[leftmargin=4\parindent, topsep=0pt, itemsep=0pt, label=\arabic*)]
\item The transition functions $F$ and $G$ of any two elements in a positive atlas satisfy $\det(J(F))=1=\det(J(G))$.
\item An oriented manifold always has a positive atlas.
\end{enumerate}\up\nn
Proof: This is very tedious! Idea:\n
1) Recall that $J(F)$ is actually the change of basis matrix between $\paren{\pd{}{x^{1}_{\alpha}},\ldots,\pd{}{x^{n}_{\alpha}}}$.
2) Start with any atlas. $\forall\alpha$, $\set{\pd{}{x^{1}_{\alpha}},\ldots,\pd{}{x^{n}_{\alpha}}}$ is either positive, or not. If it is positive, do nothing, and keep $\phi_{\alpha}$. If it's not positive, relable (switch) $x^{1}$ and $x^{2}$. Now it's positive!\n
\proven
}
\end{document}