forked from DataDog/zstd
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhuf_decompress.c
1947 lines (1717 loc) · 75.1 KB
/
huf_decompress.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef USE_EXTERNAL_ZSTD
/* ******************************************************************
* huff0 huffman decoder,
* part of Finite State Entropy library
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* You can contact the author at :
* - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/* **************************************************************
* Dependencies
****************************************************************/
#include "zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */
#include "compiler.h"
#include "bitstream.h" /* BIT_* */
#include "fse.h" /* to compress headers */
#include "huf.h"
#include "error_private.h"
#include "zstd_internal.h"
#include "bits.h" /* ZSTD_highbit32, ZSTD_countTrailingZeros64 */
/* **************************************************************
* Constants
****************************************************************/
#define HUF_DECODER_FAST_TABLELOG 11
/* **************************************************************
* Macros
****************************************************************/
#ifdef HUF_DISABLE_FAST_DECODE
# define HUF_ENABLE_FAST_DECODE 0
#else
# define HUF_ENABLE_FAST_DECODE 1
#endif
/* These two optional macros force the use one way or another of the two
* Huffman decompression implementations. You can't force in both directions
* at the same time.
*/
#if defined(HUF_FORCE_DECOMPRESS_X1) && \
defined(HUF_FORCE_DECOMPRESS_X2)
#error "Cannot force the use of the X1 and X2 decoders at the same time!"
#endif
/* When DYNAMIC_BMI2 is enabled, fast decoders are only called when bmi2 is
* supported at runtime, so we can add the BMI2 target attribute.
* When it is disabled, we will still get BMI2 if it is enabled statically.
*/
#if DYNAMIC_BMI2
# define HUF_FAST_BMI2_ATTRS BMI2_TARGET_ATTRIBUTE
#else
# define HUF_FAST_BMI2_ATTRS
#endif
#ifdef __cplusplus
# define HUF_EXTERN_C extern "C"
#else
# define HUF_EXTERN_C
#endif
#define HUF_ASM_DECL HUF_EXTERN_C
#if DYNAMIC_BMI2
# define HUF_NEED_BMI2_FUNCTION 1
#else
# define HUF_NEED_BMI2_FUNCTION 0
#endif
/* **************************************************************
* Error Management
****************************************************************/
#define HUF_isError ERR_isError
/* **************************************************************
* Byte alignment for workSpace management
****************************************************************/
#define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1)
#define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask))
/* **************************************************************
* BMI2 Variant Wrappers
****************************************************************/
typedef size_t (*HUF_DecompressUsingDTableFn)(void *dst, size_t dstSize,
const void *cSrc,
size_t cSrcSize,
const HUF_DTable *DTable);
#if DYNAMIC_BMI2
#define HUF_DGEN(fn) \
\
static size_t fn##_default( \
void* dst, size_t dstSize, \
const void* cSrc, size_t cSrcSize, \
const HUF_DTable* DTable) \
{ \
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
} \
\
static BMI2_TARGET_ATTRIBUTE size_t fn##_bmi2( \
void* dst, size_t dstSize, \
const void* cSrc, size_t cSrcSize, \
const HUF_DTable* DTable) \
{ \
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
} \
\
static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
size_t cSrcSize, HUF_DTable const* DTable, int flags) \
{ \
if (flags & HUF_flags_bmi2) { \
return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); \
} \
return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable); \
}
#else
#define HUF_DGEN(fn) \
static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
size_t cSrcSize, HUF_DTable const* DTable, int flags) \
{ \
(void)flags; \
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
}
#endif
/*-***************************/
/* generic DTableDesc */
/*-***************************/
typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc;
static DTableDesc HUF_getDTableDesc(const HUF_DTable* table)
{
DTableDesc dtd;
ZSTD_memcpy(&dtd, table, sizeof(dtd));
return dtd;
}
static size_t HUF_initFastDStream(BYTE const* ip) {
BYTE const lastByte = ip[7];
size_t const bitsConsumed = lastByte ? 8 - ZSTD_highbit32(lastByte) : 0;
size_t const value = MEM_readLEST(ip) | 1;
assert(bitsConsumed <= 8);
assert(sizeof(size_t) == 8);
return value << bitsConsumed;
}
/**
* The input/output arguments to the Huffman fast decoding loop:
*
* ip [in/out] - The input pointers, must be updated to reflect what is consumed.
* op [in/out] - The output pointers, must be updated to reflect what is written.
* bits [in/out] - The bitstream containers, must be updated to reflect the current state.
* dt [in] - The decoding table.
* ilowest [in] - The beginning of the valid range of the input. Decoders may read
* down to this pointer. It may be below iend[0].
* oend [in] - The end of the output stream. op[3] must not cross oend.
* iend [in] - The end of each input stream. ip[i] may cross iend[i],
* as long as it is above ilowest, but that indicates corruption.
*/
typedef struct {
BYTE const* ip[4];
BYTE* op[4];
U64 bits[4];
void const* dt;
BYTE const* ilowest;
BYTE* oend;
BYTE const* iend[4];
} HUF_DecompressFastArgs;
typedef void (*HUF_DecompressFastLoopFn)(HUF_DecompressFastArgs*);
/**
* Initializes args for the fast decoding loop.
* @returns 1 on success
* 0 if the fallback implementation should be used.
* Or an error code on failure.
*/
static size_t HUF_DecompressFastArgs_init(HUF_DecompressFastArgs* args, void* dst, size_t dstSize, void const* src, size_t srcSize, const HUF_DTable* DTable)
{
void const* dt = DTable + 1;
U32 const dtLog = HUF_getDTableDesc(DTable).tableLog;
const BYTE* const istart = (const BYTE*)src;
BYTE* const oend = ZSTD_maybeNullPtrAdd((BYTE*)dst, dstSize);
/* The fast decoding loop assumes 64-bit little-endian.
* This condition is false on x32.
*/
if (!MEM_isLittleEndian() || MEM_32bits())
return 0;
/* Avoid nullptr addition */
if (dstSize == 0)
return 0;
assert(dst != NULL);
/* strict minimum : jump table + 1 byte per stream */
if (srcSize < 10)
return ERROR(corruption_detected);
/* Must have at least 8 bytes per stream because we don't handle initializing smaller bit containers.
* If table log is not correct at this point, fallback to the old decoder.
* On small inputs we don't have enough data to trigger the fast loop, so use the old decoder.
*/
if (dtLog != HUF_DECODER_FAST_TABLELOG)
return 0;
/* Read the jump table. */
{
size_t const length1 = MEM_readLE16(istart);
size_t const length2 = MEM_readLE16(istart+2);
size_t const length3 = MEM_readLE16(istart+4);
size_t const length4 = srcSize - (length1 + length2 + length3 + 6);
args->iend[0] = istart + 6; /* jumpTable */
args->iend[1] = args->iend[0] + length1;
args->iend[2] = args->iend[1] + length2;
args->iend[3] = args->iend[2] + length3;
/* HUF_initFastDStream() requires this, and this small of an input
* won't benefit from the ASM loop anyways.
*/
if (length1 < 8 || length2 < 8 || length3 < 8 || length4 < 8)
return 0;
if (length4 > srcSize) return ERROR(corruption_detected); /* overflow */
}
/* ip[] contains the position that is currently loaded into bits[]. */
args->ip[0] = args->iend[1] - sizeof(U64);
args->ip[1] = args->iend[2] - sizeof(U64);
args->ip[2] = args->iend[3] - sizeof(U64);
args->ip[3] = (BYTE const*)src + srcSize - sizeof(U64);
/* op[] contains the output pointers. */
args->op[0] = (BYTE*)dst;
args->op[1] = args->op[0] + (dstSize+3)/4;
args->op[2] = args->op[1] + (dstSize+3)/4;
args->op[3] = args->op[2] + (dstSize+3)/4;
/* No point to call the ASM loop for tiny outputs. */
if (args->op[3] >= oend)
return 0;
/* bits[] is the bit container.
* It is read from the MSB down to the LSB.
* It is shifted left as it is read, and zeros are
* shifted in. After the lowest valid bit a 1 is
* set, so that CountTrailingZeros(bits[]) can be used
* to count how many bits we've consumed.
*/
args->bits[0] = HUF_initFastDStream(args->ip[0]);
args->bits[1] = HUF_initFastDStream(args->ip[1]);
args->bits[2] = HUF_initFastDStream(args->ip[2]);
args->bits[3] = HUF_initFastDStream(args->ip[3]);
/* The decoders must be sure to never read beyond ilowest.
* This is lower than iend[0], but allowing decoders to read
* down to ilowest can allow an extra iteration or two in the
* fast loop.
*/
args->ilowest = istart;
args->oend = oend;
args->dt = dt;
return 1;
}
static size_t HUF_initRemainingDStream(BIT_DStream_t* bit, HUF_DecompressFastArgs const* args, int stream, BYTE* segmentEnd)
{
/* Validate that we haven't overwritten. */
if (args->op[stream] > segmentEnd)
return ERROR(corruption_detected);
/* Validate that we haven't read beyond iend[].
* Note that ip[] may be < iend[] because the MSB is
* the next bit to read, and we may have consumed 100%
* of the stream, so down to iend[i] - 8 is valid.
*/
if (args->ip[stream] < args->iend[stream] - 8)
return ERROR(corruption_detected);
/* Construct the BIT_DStream_t. */
assert(sizeof(size_t) == 8);
bit->bitContainer = MEM_readLEST(args->ip[stream]);
bit->bitsConsumed = ZSTD_countTrailingZeros64(args->bits[stream]);
bit->start = (const char*)args->ilowest;
bit->limitPtr = bit->start + sizeof(size_t);
bit->ptr = (const char*)args->ip[stream];
return 0;
}
/* Calls X(N) for each stream 0, 1, 2, 3. */
#define HUF_4X_FOR_EACH_STREAM(X) \
do { \
X(0); \
X(1); \
X(2); \
X(3); \
} while (0)
/* Calls X(N, var) for each stream 0, 1, 2, 3. */
#define HUF_4X_FOR_EACH_STREAM_WITH_VAR(X, var) \
do { \
X(0, (var)); \
X(1, (var)); \
X(2, (var)); \
X(3, (var)); \
} while (0)
#ifndef HUF_FORCE_DECOMPRESS_X2
/*-***************************/
/* single-symbol decoding */
/*-***************************/
typedef struct { BYTE nbBits; BYTE byte; } HUF_DEltX1; /* single-symbol decoding */
/**
* Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at
* a time.
*/
static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) {
U64 D4;
if (MEM_isLittleEndian()) {
D4 = (U64)((symbol << 8) + nbBits);
} else {
D4 = (U64)(symbol + (nbBits << 8));
}
assert(D4 < (1U << 16));
D4 *= 0x0001000100010001ULL;
return D4;
}
/**
* Increase the tableLog to targetTableLog and rescales the stats.
* If tableLog > targetTableLog this is a no-op.
* @returns New tableLog
*/
static U32 HUF_rescaleStats(BYTE* huffWeight, U32* rankVal, U32 nbSymbols, U32 tableLog, U32 targetTableLog)
{
if (tableLog > targetTableLog)
return tableLog;
if (tableLog < targetTableLog) {
U32 const scale = targetTableLog - tableLog;
U32 s;
/* Increase the weight for all non-zero probability symbols by scale. */
for (s = 0; s < nbSymbols; ++s) {
huffWeight[s] += (BYTE)((huffWeight[s] == 0) ? 0 : scale);
}
/* Update rankVal to reflect the new weights.
* All weights except 0 get moved to weight + scale.
* Weights [1, scale] are empty.
*/
for (s = targetTableLog; s > scale; --s) {
rankVal[s] = rankVal[s - scale];
}
for (s = scale; s > 0; --s) {
rankVal[s] = 0;
}
}
return targetTableLog;
}
typedef struct {
U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];
U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1];
U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
BYTE symbols[HUF_SYMBOLVALUE_MAX + 1];
BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];
} HUF_ReadDTableX1_Workspace;
size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int flags)
{
U32 tableLog = 0;
U32 nbSymbols = 0;
size_t iSize;
void* const dtPtr = DTable + 1;
HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr;
HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace;
DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp));
if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge);
DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
/* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */
iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), flags);
if (HUF_isError(iSize)) return iSize;
/* Table header */
{ DTableDesc dtd = HUF_getDTableDesc(DTable);
U32 const maxTableLog = dtd.maxTableLog + 1;
U32 const targetTableLog = MIN(maxTableLog, HUF_DECODER_FAST_TABLELOG);
tableLog = HUF_rescaleStats(wksp->huffWeight, wksp->rankVal, nbSymbols, tableLog, targetTableLog);
if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */
dtd.tableType = 0;
dtd.tableLog = (BYTE)tableLog;
ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
}
/* Compute symbols and rankStart given rankVal:
*
* rankVal already contains the number of values of each weight.
*
* symbols contains the symbols ordered by weight. First are the rankVal[0]
* weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on.
* symbols[0] is filled (but unused) to avoid a branch.
*
* rankStart contains the offset where each rank belongs in the DTable.
* rankStart[0] is not filled because there are no entries in the table for
* weight 0.
*/
{ int n;
U32 nextRankStart = 0;
int const unroll = 4;
int const nLimit = (int)nbSymbols - unroll + 1;
for (n=0; n<(int)tableLog+1; n++) {
U32 const curr = nextRankStart;
nextRankStart += wksp->rankVal[n];
wksp->rankStart[n] = curr;
}
for (n=0; n < nLimit; n += unroll) {
int u;
for (u=0; u < unroll; ++u) {
size_t const w = wksp->huffWeight[n+u];
wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u);
}
}
for (; n < (int)nbSymbols; ++n) {
size_t const w = wksp->huffWeight[n];
wksp->symbols[wksp->rankStart[w]++] = (BYTE)n;
}
}
/* fill DTable
* We fill all entries of each weight in order.
* That way length is a constant for each iteration of the outer loop.
* We can switch based on the length to a different inner loop which is
* optimized for that particular case.
*/
{ U32 w;
int symbol = wksp->rankVal[0];
int rankStart = 0;
for (w=1; w<tableLog+1; ++w) {
int const symbolCount = wksp->rankVal[w];
int const length = (1 << w) >> 1;
int uStart = rankStart;
BYTE const nbBits = (BYTE)(tableLog + 1 - w);
int s;
int u;
switch (length) {
case 1:
for (s=0; s<symbolCount; ++s) {
HUF_DEltX1 D;
D.byte = wksp->symbols[symbol + s];
D.nbBits = nbBits;
dt[uStart] = D;
uStart += 1;
}
break;
case 2:
for (s=0; s<symbolCount; ++s) {
HUF_DEltX1 D;
D.byte = wksp->symbols[symbol + s];
D.nbBits = nbBits;
dt[uStart+0] = D;
dt[uStart+1] = D;
uStart += 2;
}
break;
case 4:
for (s=0; s<symbolCount; ++s) {
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
MEM_write64(dt + uStart, D4);
uStart += 4;
}
break;
case 8:
for (s=0; s<symbolCount; ++s) {
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
MEM_write64(dt + uStart, D4);
MEM_write64(dt + uStart + 4, D4);
uStart += 8;
}
break;
default:
for (s=0; s<symbolCount; ++s) {
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
for (u=0; u < length; u += 16) {
MEM_write64(dt + uStart + u + 0, D4);
MEM_write64(dt + uStart + u + 4, D4);
MEM_write64(dt + uStart + u + 8, D4);
MEM_write64(dt + uStart + u + 12, D4);
}
assert(u == length);
uStart += length;
}
break;
}
symbol += symbolCount;
rankStart += symbolCount * length;
}
}
return iSize;
}
FORCE_INLINE_TEMPLATE BYTE
HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog)
{
size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
BYTE const c = dt[val].byte;
BIT_skipBits(Dstream, dt[val].nbBits);
return c;
}
#define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \
do { *ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog); } while (0)
#define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr) \
do { \
if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr); \
} while (0)
#define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \
do { \
if (MEM_64bits()) \
HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr); \
} while (0)
HINT_INLINE size_t
HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog)
{
BYTE* const pStart = p;
/* up to 4 symbols at a time */
if ((pEnd - p) > 3) {
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) {
HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
HUF_DECODE_SYMBOLX1_1(p, bitDPtr);
HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
}
} else {
BIT_reloadDStream(bitDPtr);
}
/* [0-3] symbols remaining */
if (MEM_32bits())
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd))
HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
/* no more data to retrieve from bitstream, no need to reload */
while (p < pEnd)
HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
return (size_t)(pEnd-pStart);
}
FORCE_INLINE_TEMPLATE size_t
HUF_decompress1X1_usingDTable_internal_body(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
BYTE* op = (BYTE*)dst;
BYTE* const oend = ZSTD_maybeNullPtrAdd(op, dstSize);
const void* dtPtr = DTable + 1;
const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
BIT_DStream_t bitD;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
U32 const dtLog = dtd.tableLog;
CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog);
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
return dstSize;
}
/* HUF_decompress4X1_usingDTable_internal_body():
* Conditions :
* @dstSize >= 6
*/
FORCE_INLINE_TEMPLATE size_t
HUF_decompress4X1_usingDTable_internal_body(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable)
{
/* Check */
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */
{ const BYTE* const istart = (const BYTE*) cSrc;
BYTE* const ostart = (BYTE*) dst;
BYTE* const oend = ostart + dstSize;
BYTE* const olimit = oend - 3;
const void* const dtPtr = DTable + 1;
const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
/* Init */
BIT_DStream_t bitD1;
BIT_DStream_t bitD2;
BIT_DStream_t bitD3;
BIT_DStream_t bitD4;
size_t const length1 = MEM_readLE16(istart);
size_t const length2 = MEM_readLE16(istart+2);
size_t const length3 = MEM_readLE16(istart+4);
size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
const BYTE* const istart1 = istart + 6; /* jumpTable */
const BYTE* const istart2 = istart1 + length1;
const BYTE* const istart3 = istart2 + length2;
const BYTE* const istart4 = istart3 + length3;
const size_t segmentSize = (dstSize+3) / 4;
BYTE* const opStart2 = ostart + segmentSize;
BYTE* const opStart3 = opStart2 + segmentSize;
BYTE* const opStart4 = opStart3 + segmentSize;
BYTE* op1 = ostart;
BYTE* op2 = opStart2;
BYTE* op3 = opStart3;
BYTE* op4 = opStart4;
DTableDesc const dtd = HUF_getDTableDesc(DTable);
U32 const dtLog = dtd.tableLog;
U32 endSignal = 1;
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */
assert(dstSize >= 6); /* validated above */
CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
/* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */
if ((size_t)(oend - op4) >= sizeof(size_t)) {
for ( ; (endSignal) & (op4 < olimit) ; ) {
HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
HUF_DECODE_SYMBOLX1_1(op1, &bitD1);
HUF_DECODE_SYMBOLX1_1(op2, &bitD2);
HUF_DECODE_SYMBOLX1_1(op3, &bitD3);
HUF_DECODE_SYMBOLX1_1(op4, &bitD4);
HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
HUF_DECODE_SYMBOLX1_0(op1, &bitD1);
HUF_DECODE_SYMBOLX1_0(op2, &bitD2);
HUF_DECODE_SYMBOLX1_0(op3, &bitD3);
HUF_DECODE_SYMBOLX1_0(op4, &bitD4);
endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
}
}
/* check corruption */
/* note : should not be necessary : op# advance in lock step, and we control op4.
* but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */
if (op1 > opStart2) return ERROR(corruption_detected);
if (op2 > opStart3) return ERROR(corruption_detected);
if (op3 > opStart4) return ERROR(corruption_detected);
/* note : op4 supposed already verified within main loop */
/* finish bitStreams one by one */
HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog);
HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog);
HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog);
HUF_decodeStreamX1(op4, &bitD4, oend, dt, dtLog);
/* check */
{ U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
if (!endCheck) return ERROR(corruption_detected); }
/* decoded size */
return dstSize;
}
}
#if HUF_NEED_BMI2_FUNCTION
static BMI2_TARGET_ATTRIBUTE
size_t HUF_decompress4X1_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
size_t cSrcSize, HUF_DTable const* DTable) {
return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
}
#endif
static
size_t HUF_decompress4X1_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
size_t cSrcSize, HUF_DTable const* DTable) {
return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
}
#if ZSTD_ENABLE_ASM_X86_64_BMI2
HUF_ASM_DECL void HUF_decompress4X1_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN;
#endif
static HUF_FAST_BMI2_ATTRS
void HUF_decompress4X1_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args)
{
U64 bits[4];
BYTE const* ip[4];
BYTE* op[4];
U16 const* const dtable = (U16 const*)args->dt;
BYTE* const oend = args->oend;
BYTE const* const ilowest = args->ilowest;
/* Copy the arguments to local variables */
ZSTD_memcpy(&bits, &args->bits, sizeof(bits));
ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip));
ZSTD_memcpy(&op, &args->op, sizeof(op));
assert(MEM_isLittleEndian());
assert(!MEM_32bits());
for (;;) {
BYTE* olimit;
int stream;
/* Assert loop preconditions */
#ifndef NDEBUG
for (stream = 0; stream < 4; ++stream) {
assert(op[stream] <= (stream == 3 ? oend : op[stream + 1]));
assert(ip[stream] >= ilowest);
}
#endif
/* Compute olimit */
{
/* Each iteration produces 5 output symbols per stream */
size_t const oiters = (size_t)(oend - op[3]) / 5;
/* Each iteration consumes up to 11 bits * 5 = 55 bits < 7 bytes
* per stream.
*/
size_t const iiters = (size_t)(ip[0] - ilowest) / 7;
/* We can safely run iters iterations before running bounds checks */
size_t const iters = MIN(oiters, iiters);
size_t const symbols = iters * 5;
/* We can simply check that op[3] < olimit, instead of checking all
* of our bounds, since we can't hit the other bounds until we've run
* iters iterations, which only happens when op[3] == olimit.
*/
olimit = op[3] + symbols;
/* Exit fast decoding loop once we reach the end. */
if (op[3] == olimit)
break;
/* Exit the decoding loop if any input pointer has crossed the
* previous one. This indicates corruption, and a precondition
* to our loop is that ip[i] >= ip[0].
*/
for (stream = 1; stream < 4; ++stream) {
if (ip[stream] < ip[stream - 1])
goto _out;
}
}
#ifndef NDEBUG
for (stream = 1; stream < 4; ++stream) {
assert(ip[stream] >= ip[stream - 1]);
}
#endif
#define HUF_4X1_DECODE_SYMBOL(_stream, _symbol) \
do { \
int const index = (int)(bits[(_stream)] >> 53); \
int const entry = (int)dtable[index]; \
bits[(_stream)] <<= (entry & 0x3F); \
op[(_stream)][(_symbol)] = (BYTE)((entry >> 8) & 0xFF); \
} while (0)
#define HUF_4X1_RELOAD_STREAM(_stream) \
do { \
int const ctz = ZSTD_countTrailingZeros64(bits[(_stream)]); \
int const nbBits = ctz & 7; \
int const nbBytes = ctz >> 3; \
op[(_stream)] += 5; \
ip[(_stream)] -= nbBytes; \
bits[(_stream)] = MEM_read64(ip[(_stream)]) | 1; \
bits[(_stream)] <<= nbBits; \
} while (0)
/* Manually unroll the loop because compilers don't consistently
* unroll the inner loops, which destroys performance.
*/
do {
/* Decode 5 symbols in each of the 4 streams */
HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 0);
HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 1);
HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 2);
HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 3);
HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 4);
/* Reload each of the 4 the bitstreams */
HUF_4X_FOR_EACH_STREAM(HUF_4X1_RELOAD_STREAM);
} while (op[3] < olimit);
#undef HUF_4X1_DECODE_SYMBOL
#undef HUF_4X1_RELOAD_STREAM
}
_out:
/* Save the final values of each of the state variables back to args. */
ZSTD_memcpy(&args->bits, &bits, sizeof(bits));
ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip));
ZSTD_memcpy(&args->op, &op, sizeof(op));
}
/**
* @returns @p dstSize on success (>= 6)
* 0 if the fallback implementation should be used
* An error if an error occurred
*/
static HUF_FAST_BMI2_ATTRS
size_t
HUF_decompress4X1_usingDTable_internal_fast(
void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
const HUF_DTable* DTable,
HUF_DecompressFastLoopFn loopFn)
{
void const* dt = DTable + 1;
BYTE const* const ilowest = (BYTE const*)cSrc;
BYTE* const oend = ZSTD_maybeNullPtrAdd((BYTE*)dst, dstSize);
HUF_DecompressFastArgs args;
{ size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
FORWARD_IF_ERROR(ret, "Failed to init fast loop args");
if (ret == 0)
return 0;
}
assert(args.ip[0] >= args.ilowest);
loopFn(&args);
/* Our loop guarantees that ip[] >= ilowest and that we haven't
* overwritten any op[].
*/
assert(args.ip[0] >= ilowest);
assert(args.ip[0] >= ilowest);
assert(args.ip[1] >= ilowest);
assert(args.ip[2] >= ilowest);
assert(args.ip[3] >= ilowest);
assert(args.op[3] <= oend);
assert(ilowest == args.ilowest);
assert(ilowest + 6 == args.iend[0]);
(void)ilowest;
/* finish bit streams one by one. */
{ size_t const segmentSize = (dstSize+3) / 4;
BYTE* segmentEnd = (BYTE*)dst;
int i;
for (i = 0; i < 4; ++i) {
BIT_DStream_t bit;
if (segmentSize <= (size_t)(oend - segmentEnd))
segmentEnd += segmentSize;
else
segmentEnd = oend;
FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
/* Decompress and validate that we've produced exactly the expected length. */
args.op[i] += HUF_decodeStreamX1(args.op[i], &bit, segmentEnd, (HUF_DEltX1 const*)dt, HUF_DECODER_FAST_TABLELOG);
if (args.op[i] != segmentEnd) return ERROR(corruption_detected);
}
}
/* decoded size */
assert(dstSize != 0);
return dstSize;
}
HUF_DGEN(HUF_decompress1X1_usingDTable_internal)
static size_t HUF_decompress4X1_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
size_t cSrcSize, HUF_DTable const* DTable, int flags)
{
HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X1_usingDTable_internal_default;
HUF_DecompressFastLoopFn loopFn = HUF_decompress4X1_usingDTable_internal_fast_c_loop;
#if DYNAMIC_BMI2
if (flags & HUF_flags_bmi2) {
fallbackFn = HUF_decompress4X1_usingDTable_internal_bmi2;
# if ZSTD_ENABLE_ASM_X86_64_BMI2
if (!(flags & HUF_flags_disableAsm)) {
loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop;
}
# endif
} else {
return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
}
#endif
#if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
if (!(flags & HUF_flags_disableAsm)) {
loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop;
}
#endif
if (HUF_ENABLE_FAST_DECODE && !(flags & HUF_flags_disableFast)) {
size_t const ret = HUF_decompress4X1_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn);
if (ret != 0)
return ret;
}
return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
}
static size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
const void* cSrc, size_t cSrcSize,
void* workSpace, size_t wkspSize, int flags)
{
const BYTE* ip = (const BYTE*) cSrc;
size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags);
if (HUF_isError(hSize)) return hSize;
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
ip += hSize; cSrcSize -= hSize;
return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
}
#endif /* HUF_FORCE_DECOMPRESS_X2 */
#ifndef HUF_FORCE_DECOMPRESS_X1
/* *************************/
/* double-symbols decoding */
/* *************************/
typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2; /* double-symbols decoding */
typedef struct { BYTE symbol; } sortedSymbol_t;
typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1];
typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX];
/**
* Constructs a HUF_DEltX2 in a U32.
*/
static U32 HUF_buildDEltX2U32(U32 symbol, U32 nbBits, U32 baseSeq, int level)
{
U32 seq;
DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, sequence) == 0);
DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, nbBits) == 2);
DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, length) == 3);
DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U32));
if (MEM_isLittleEndian()) {
seq = level == 1 ? symbol : (baseSeq + (symbol << 8));
return seq + (nbBits << 16) + ((U32)level << 24);
} else {
seq = level == 1 ? (symbol << 8) : ((baseSeq << 8) + symbol);
return (seq << 16) + (nbBits << 8) + (U32)level;
}
}
/**
* Constructs a HUF_DEltX2.
*/
static HUF_DEltX2 HUF_buildDEltX2(U32 symbol, U32 nbBits, U32 baseSeq, int level)
{
HUF_DEltX2 DElt;
U32 const val = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
DEBUG_STATIC_ASSERT(sizeof(DElt) == sizeof(val));
ZSTD_memcpy(&DElt, &val, sizeof(val));
return DElt;
}
/**
* Constructs 2 HUF_DEltX2s and packs them into a U64.
*/
static U64 HUF_buildDEltX2U64(U32 symbol, U32 nbBits, U16 baseSeq, int level)
{
U32 DElt = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
return (U64)DElt + ((U64)DElt << 32);
}
/**
* Fills the DTable rank with all the symbols from [begin, end) that are each