forked from neelsoumya/rlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_commonfunc_stan.py
executable file
·1559 lines (1385 loc) · 50.9 KB
/
make_commonfunc_stan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#! /usr/bin/env python3
# rlib/make_commonfunc_stan.py
"""
===============================================================================
Copyright (C) 2009-2018 Rudolf Cardinal ([email protected]).
This file is part of rlib.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
===============================================================================
Stan doesn't allow templating of its user-defined functions.
As a result, we end up repeating boilerplate code.
This is probably preferable - a script to make the .stan file.
"""
import argparse
from enum import Enum
from typing import List, Tuple
# =============================================================================
# Stan variable types
# =============================================================================
class VarDescriptor(object):
def __init__(self,
abbreviation: str,
typedef: str,
singleton: bool,
dimensions: int,
vector: bool,
name: str = None) -> None:
self.abbreviation = abbreviation
self.typedef = typedef
self.singleton = singleton
self.dimensions = dimensions
self.vector = vector
self.name = name
def __str__(self) -> str:
return self.typedef
def __repr__(self) -> str:
return "VarDescriptor<{} {}>".format(self.typedef, self.name)
def __eq__(self, other: "VarDescriptor") -> bool:
return self.typedef == other.typedef
def clone(self) -> "VarDescriptor":
return VarDescriptor(
abbreviation=self.abbreviation,
typedef=self.typedef,
singleton=self.singleton,
dimensions=self.dimensions,
vector=self.vector,
name=self.name
)
REAL = VarDescriptor(
abbreviation="R",
typedef="real",
singleton=True,
dimensions=1,
vector=False
)
ARRAY = VarDescriptor(
abbreviation="A",
typedef="real[]",
singleton=False,
dimensions=1,
vector=False
)
ARRAY_2D = VarDescriptor(
abbreviation="2",
typedef="real[,]",
singleton=False,
dimensions=2,
vector=False
)
VECTOR = VarDescriptor(
abbreviation="V",
typedef="vector",
singleton=False,
dimensions=1,
vector=True
)
ALL_TYPES = [REAL, ARRAY, ARRAY_2D, VECTOR]
class SampleMethod(Enum):
PLAIN = 1
LOWER = 2
UPPER = 3
RANGE = 4
# =============================================================================
# Helper functions
# =============================================================================
def comment(x: str) -> str:
return """
// {}
""".format(x)
def remove_blank_lines(x: str) -> str:
lines = x.splitlines()
return "\n".join(line for line in lines if line.strip())
# =============================================================================
# Common stuff
# =============================================================================
HEADER = """
// DO NOT EDIT THIS FILE DIRECTLY. It is created by make_commonfunc_stan.py.
// ========================================================================
// Common functions
// ========================================================================
/*
Reminders:
- Annoyingly, you can't modify arguments to Stan user-defined functions.
(No pass-by-reference.)
- size() doesn't work on a plain "vector". Use num_elements().
- Array/vector indexing is 1-based.
- The addition-assignment (+=) operator generally doesn't work (it
appears to be reserved for the one variable "target += ...").
Similarly for all others you might expect.
- Can't define constants in a functions{} block.
*/
"""
SIMPLE_FUNCTIONS = """
// ------------------------------------------------------------------------
// Simple functions
// ------------------------------------------------------------------------
real softmaxNth(vector softmax_inputs, int index)
{
/*
For softmax: see my miscstat.R; the important points for
optimization are (1) that softmax is invariant to the addition/
subtraction of a constant, and subtracting the mean makes the
numbers less likely to fall over computationally; (2) we only
need the final part of the computation for a single number
(preference for the right), so we don't have to waste time
vector-calculating the preference for the left as well [that is:
we don't have to calculate s_exp_products / sum(s_exp_products)].
Since Stan 2.0.0, the alternative is to use softmax(); see
stan/math/fwd/mat/fun/softmax.hpp. Not sure which is faster, or
whether it really matters.
*/
int length = num_elements(softmax_inputs);
vector[length] s_exp_products;
if (index < 1 || index > length) {
reject("softmaxNth(): index is ", index,
" but must be in range 1-", length);
}
s_exp_products = exp(softmax_inputs - mean(softmax_inputs));
return s_exp_products[index] / sum(s_exp_products);
}
real softmaxNthInvTemp(vector softmax_inputs, real inverse_temp, int index)
{
int length = num_elements(softmax_inputs);
vector[length] s_exp_products;
if (index < 1 || index > length) {
reject("softmaxNthInvTemp(): index is ", index,
" but must be in range 1-", length);
}
s_exp_products = exp(softmax_inputs * inverse_temp - mean(softmax_inputs));
return s_exp_products[index] / sum(s_exp_products);
}
real logistic(real x, real x0, real k, real L)
{
// Notation as per https://en.wikipedia.org/wiki/Logistic_function
// x0: centre
// k: steepness
// L: maximum (usually 1)
return L / (1 + exp(-k * (x - x0)));
}
real bound(real x, real min_value, real max_value)
{
// We should simply be able to do this:
// return max(min_value, min(x, max_value));
// ... but Stan doesn't have max(real, real) or
// min(real, real) functions!
if (x < min_value) {
return min_value;
} else if (x > max_value) {
return max_value;
} else {
return x;
}
}
real boundLower(real x, real min_value)
{
// a.k.a. max()
if (x < min_value) {
return min_value;
} else {
return x;
}
}
real boundUpper(real x, real max_value)
{
// a.k.a. min()
if (x > max_value) {
return max_value;
} else {
return x;
}
}
"""
DUFF_ANOVA_FUNCTIONS = """
// ------------------------------------------------------------------------
// ANOVA-type designs: DEPRECATED APPROACH
// ------------------------------------------------------------------------
// ... rather than coding intercept + main effects + interactions (etc.),
// as here, it's probably best to code individual cells. That makes
// distributions more sensible (and predictable/easily calculable).
int interactionIndex2Way(int first_index, int first_max,
int second_index, int second_max)
{
/*
Because Stan doesn't support sampling into matrix, we need to
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
convert matrix-like concepts to vectors. Specifically, it doesn't
support either
matrix[A, B] m;
m ~ normal(0, 0.5); // error: "no matches for matrix ~ normal(int, real)"
or
real a[A, B];
a ~ normal(0, 0.5); // error: "no matches for real[,] ~ normal(int, real)"
And note that a vectorized sampling statement is strongly preferred
(for performance reasons) over iterating through a matrix:
https://groups.google.com/forum/#!topic/stan-users/4gv3fNCqSNk
"Do not loop over sampling statements when a vectorized
sampling statement is possible"
So we use a vector of size A*B, and this index lookup function.
Parameters:
- first_index is from 1 to first_max
- second_index is from 1 to second_max
- We want a consecutive index from 1 to (first_max * second_max)
In the output, the FIRST will cycle LEAST rapidly, and the
LAST will cycle MOST rapidly.
*/
return (
(first_index - 1) * first_max + // slow cycling
second_index // fast cycling
);
}
vector setLastForZeroSum(vector parameters)
{
/*
Makes a vector of parameters sum to zero, by setting the last
element to the negative sum of the others.
Used for ANOVA-style effects; e.g. if you have a grand mean, you
might specify the effects of a three-level factor A as A1, A2, A3;
then A1 + A2 + A3 must be zero, so A1 and A2 are free parameters
that are drawn from an appropriate distribution, and then A3 is
fully constrainted to be -(A1 + A2).
Because we can't modify the input parameters, we make a new copy.
Returns a vector of the SAME LENGTH as the original.
(The last element of the incoming vector is ignored.)
*/
int length = num_elements(parameters);
vector[length] newparams;
real total = 0.0;
for (i in 1:length - 1) {
real value = parameters[i];
newparams[i] = value;
total = total + value;
}
newparams[length] = -total;
return newparams;
}
vector appendElementForZeroSum(vector parameters)
{
/*
As for setLastForZeroSum(), but uses all the information in the
incoming vector, and returns a vector that's one element longer.
*/
int initial_length = num_elements(parameters);
int new_length = initial_length + 1;
vector[new_length] newparams;
real total = 0.0;
for (i in 1:initial_length) {
real value = parameters[i];
newparams[i] = value;
total = total + value;
}
newparams[new_length] = -total;
return newparams;
}
"""
LOG_PROB_HEADER = """
// ------------------------------------------------------------------------
// LOG PROBABILITY FUNCTIONS FOR BRIDGE SAMPLING
// ------------------------------------------------------------------------
/*
We can have functions that access the log probability accumulator
if the function name ends in '_lp'; see Stan manual section 23.3.
RE ARGUMENTS:
The Stan manual uses notation like
real normal_lpdf(reals y | reals mu, reals sigma)
but "reals" isn't something you can actually use in user functions.
See p495:
"reals" means:
real
real[]
vector
row_vector
"ints" means
int
int[]
Moreover, you can't define two copies of the same function with
different names (23.6: no overloading of user-defined functions).
For real arguments, the options are therefore:
real
real[] // one-dimensional array
real[,] // two-dimensional array
vector // vector, similar to a one-dimensional array.
matrix // matrix, similar to a two-dimensional array.
See p297 of the 2017 Stan manual, and also p319.
Which do we use in practice?
- Firstly, we use single numbers or one-dimensional collections,
and generally the latter. So that means real[] or vector.
- We use both.
- So let's have "Real", "Arr" and "Vec" versions.
- Then, to make things worse, we sometimes have constant parameters,
and sometimes array/vector parameters...
- For something with two distribution parameters, like the normal
distribution and many others, that means that we have 3*3*3 combinations
for each thing. Urgh. Stan should allow user overloading ;).
- Let's do it and define "R", "A", "2", "V" for the parameters
- Except we won't be returning R unless it's RRR!
- Last thing cycles fastest.
So:
RRR
-- nothing else R*
ARA
ARV
AAR
AAA
AAV
AVR
AVA
AVV
2RR
...
VRA
VRV
VAR
VAA
VAV
VVR
VVA
VVV
RE SAMPLING TWO-DIMENSIONAL ARRAYS:
You can't sample an entire matrix or 2D array; you have do to it row-wise.
- This isn't very clear in the manual, as far as I can see.
- The definition of e.g. beta_lpdf() is in terms of "reals", which
probably means a vector or array of real.
- Section 9.6 ("Multi-logit regression") of the Stan manual v2.16.0
gives an example where one would use a matrix sampling statement but
they don't.
- But it is explicit in the sense that they define what they mean by
"reals", as above, and that doesn't include 2D arrays.
- Better to move the boilerplate code here than in user land, though.
RE TWO-DIMENSIONAL ARRAYS:
real thing[N_A, N_B];
// One way to iterate through all elements:
for (a in 1:N_A) {
for (b in 1:N_B) {
do_something(thing[a, b]);
}
}
// NOT another way to iterate through all elements:
for (i in 1:num_elements(thing)) {
do_something(thing[i]); // A BUG, because b[1] is a real[], not a real
}
So for some functions we want real[,]... let's give this the one-character
notation "2" (for 2D array).
Now:
num_elements() gives the total, in this case N_A * N_B;
size() gives the size of first dimension, in this case N_A;
dims() gives all dimensions, in this case an int[] containing {N_A, N_B}.
RE ARITHMETIC:
Note that we cannot do:
real * real[]
vector * vector
*/
"""
LOG_PROB_HELPERS = """
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Helper functions for boundary checking
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// See Stan (2017) manual p82.
// These are internal functions that ASSUME size match.
// We can't use a leading "_" prefix on function names (Stan syntax error).
// Lower
void enforceLowerBound_R_lp(real y, real lower)
{
if (y < lower) {
target += negative_infinity();
}
}
void enforceLowerBound_A_lp(real[] y, real lower)
{
int length = num_elements(y);
for (i in 1:length) {
if (y[i] < lower) {
target += negative_infinity();
}
}
}
void enforceLowerBound_2_lp(real[,] y, real lower)
{
int dimensions[2] = dims(y);
int nrows = dimensions[1];
int ncols = dimensions[2];
for (i in 1:nrows) {
for (j in 1:ncols) {
if (y[i, j] < lower) {
target += negative_infinity();
}
}
}
}
void enforceLowerBound_V_lp(vector y, real lower)
{
int length = num_elements(y);
for (i in 1:length) {
if (y[i] < lower) {
target += negative_infinity();
}
}
}
// Upper
void enforceUpperBound_R_lp(real y, real upper)
{
if (y > upper) {
target += negative_infinity();
}
}
void enforceUpperBound_A_lp(real[] y, real upper)
{
int length = num_elements(y);
for (i in 1:length) {
if (y[i] > upper) {
target += negative_infinity();
}
}
}
void enforceUpperBound_2_lp(real[,] y, real upper)
{
int dimensions[2] = dims(y);
int nrows = dimensions[1];
int ncols = dimensions[2];
for (i in 1:nrows) {
for (j in 1:ncols) {
if (y[i, j] > upper) {
target += negative_infinity();
}
}
}
}
void enforceUpperBound_V_lp(vector y, real upper)
{
int length = num_elements(y);
for (i in 1:length) {
if (y[i] > upper) {
target += negative_infinity();
}
}
}
// Range
void enforceRangeBounds_R_lp(real y, real lower, real upper)
{
if (y < lower || y > upper) {
target += negative_infinity();
}
}
void enforceRangeBounds_A_lp(real[] y, real lower, real upper)
{
int length = num_elements(y);
for (i in 1:length) {
if (y[i] < lower || y[i] > upper) {
target += negative_infinity();
}
}
}
void enforceRangeBounds_2_lp(real[,] y, real lower, real upper)
{
int dimensions[2] = dims(y);
int nrows = dimensions[1];
int ncols = dimensions[2];
for (i in 1:nrows) {
for (j in 1:ncols) {
if (y[i, j] < lower || y[i, j] > upper) {
target += negative_infinity();
}
}
}
}
void enforceRangeBounds_V_lp(vector y, real lower, real upper)
{
int length = num_elements(y);
for (i in 1:length) {
if (y[i] < lower || y[i] > upper) {
target += negative_infinity();
}
}
}
"""
REPARAM_HEADER = """
// ------------------------------------------------------------------------
// LOG PROBABILITY FUNCTIONS FOR BRIDGE SAMPLING WITH NON-CENTERED
// REPARAMETERIZATION
// ------------------------------------------------------------------------
"""
# =============================================================================
# Generic distribution
# =============================================================================
def sample_generic(name_caps: str,
name_lower: str,
y: VarDescriptor,
distribution_params: List[VarDescriptor],
method: SampleMethod) -> str:
if (y.dimensions == 2 and
any(vd.dimensions > 1 for vd in distribution_params)):
raise NotImplementedError("y={}, distribution_params={}".format(
y, distribution_params))
y.name = "y"
call_params = [y] + distribution_params
lower = REAL.clone()
lower.name = "lower"
upper = REAL.clone()
upper.name = "upper"
lpdf_func = "{}_lpdf".format(name_lower)
lcdf_func = "{}_lcdf".format(name_lower)
lccdf_func = "{}_lccdf".format(name_lower)
pdf_call_params = ", ".join(vd.name for vd in distribution_params)
if method == SampleMethod.PLAIN:
if y.dimensions == 2:
code = """
int nrows = size(y);
for (i in 1:nrows) {{
target += {lpdf_func}(y[i] | {pdf_call_params});
}}
""".format(lpdf_func=lpdf_func,
pdf_call_params=pdf_call_params)
else:
code = """
target += {lpdf_func}(y | {pdf_call_params});
""".format(lpdf_func=lpdf_func,
pdf_call_params=pdf_call_params)
funcname_extra = ""
elif method == SampleMethod.LOWER:
if y.dimensions == 2:
code = """
int nrows = size(y);
real correction = {lccdf_func}(lower | {pdf_call_params});
for (i in 1:nrows) {{
target += {lpdf_func}(y[i] | {pdf_call_params}) -
correction;
}}
enforceLowerBound_{ya}_lp(y, lower);
""".format(lpdf_func=lpdf_func,
lccdf_func=lccdf_func,
pdf_call_params=pdf_call_params,
ya=y.abbreviation)
else:
code = """
target += {lpdf_func}(y | {pdf_call_params}) -
{lccdf_func}(lower | {pdf_call_params});
enforceLowerBound_{ya}_lp(y, lower);
""".format(lpdf_func=lpdf_func,
lccdf_func=lccdf_func,
pdf_call_params=pdf_call_params,
ya=y.abbreviation)
funcname_extra = "LowerBound"
call_params += [lower]
elif method == SampleMethod.UPPER:
if y.dimensions == 2:
code = """
int nrows = size(y);
real correction = {lcdf_func}(upper | {pdf_call_params});
for (i in 1:nrows) {{
target += {lpdf_func}(y[i] | {pdf_call_params}) -
correction;
}}
enforceUpperBound_{ya}_lp(y, upper);
""".format(lpdf_func=lpdf_func,
lcdf_func=lcdf_func,
pdf_call_params=pdf_call_params,
ya=y.abbreviation)
else:
code = """
target += {lpdf_func}(y | {pdf_call_params}) -
{lcdf_func}(upper | {pdf_call_params});
enforceUpperBound_{ya}_lp(y, upper);
""".format(lpdf_func=lpdf_func,
lcdf_func=lcdf_func,
pdf_call_params=pdf_call_params,
ya=y.abbreviation)
funcname_extra = "UpperBound"
call_params += [upper]
elif method == SampleMethod.RANGE:
if y.dimensions == 2:
code = """
int nrows = size(y);
real correction = log_diff_exp({lcdf_func}(upper | {pdf_call_params}),
{lcdf_func}(lower | {pdf_call_params}));
for (i in 1:nrows) {{
target += {lpdf_func}(y[i] | {pdf_call_params}) -
correction;
}}
enforceRangeBounds_{ya}_lp(y, lower, upper);
""".format(lpdf_func=lpdf_func,
lcdf_func=lcdf_func,
pdf_call_params=pdf_call_params,
ya=y.abbreviation)
else:
code = """
target += {lpdf_func}(y | {pdf_call_params}) -
log_diff_exp({lcdf_func}(upper | {pdf_call_params}),
{lcdf_func}(lower | {pdf_call_params}));
enforceRangeBounds_{ya}_lp(y, lower, upper);
""".format(lpdf_func=lpdf_func,
lcdf_func=lcdf_func,
pdf_call_params=pdf_call_params,
ya=y.abbreviation)
funcname_extra = "RangeBound"
call_params += [lower, upper]
else:
raise AssertionError("bug")
funcname = "sample{name_caps}{funcname_extra}_{types}_lp".format(
name_caps=name_caps,
funcname_extra=funcname_extra,
types="".join(vd.abbreviation for vd in [y] + distribution_params)
)
param_defs = ", ".join(
"{} {}".format(vd.typedef, vd.name)
for vd in call_params
)
return """
void {funcname}({param_defs})
{{
{code}
}}
""".format(
funcname=funcname,
param_defs=param_defs,
code=code.strip(),
)
def sample_uniform(y: VarDescriptor, lower: VarDescriptor,
upper: VarDescriptor) -> str:
distribution_params = [lower, upper]
if (y.dimensions == 2 and
any(vd.dimensions > 1 for vd in distribution_params)):
raise NotImplementedError("y={}, distribution_params={}".format(
y, distribution_params))
y.name = "y"
lower.name = "lower"
upper.name = "upper"
if y.dimensions == 2:
code = """
int nrows = size(y);
for (i in 1:nrows) {
target += uniform_lpdf(y[i] | lower, upper);
}
"""
else:
code = """
target += uniform_lpdf(y | lower, upper);
"""
call_params = [y, lower, upper]
funcname = "sampleUniform_{types}_lp".format(
types="".join(vd.abbreviation for vd in call_params)
)
param_defs = ", ".join(
"{} {}".format(vd.typedef, vd.name)
for vd in call_params
)
return """
void {funcname}({param_defs})
{{
{code}
}}
""".format(
funcname=funcname,
param_defs=param_defs,
code=code.strip(),
)
# =============================================================================
# Normal distribution
# =============================================================================
def get_normal_distribution() -> str:
code = """
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Normal distribution
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
supported_combinations = [] # type: List[Tuple[VarDescriptor, VarDescriptor, VarDescriptor]] # noqa
for y in ALL_TYPES:
for mu in ALL_TYPES:
for sigma in ALL_TYPES:
if y == REAL and (mu != REAL or sigma != REAL):
continue
if y == ARRAY_2D and (mu != REAL or sigma != REAL):
continue
if mu.dimensions == 2 or sigma.dimensions == 2:
continue
supported_combinations.append((y, mu, sigma))
def do_call(y_: VarDescriptor,
mu_: VarDescriptor,
sigma_: VarDescriptor,
method: SampleMethod):
nonlocal code
# Cloning necessary to prevent name overwriting:
mu_ = mu_.clone()
sigma_ = sigma_.clone()
y_ = y_.clone()
mu_.name = "mu"
sigma_.name = "sigma"
code += sample_generic(
name_caps="Normal",
name_lower="normal",
y=y_,
distribution_params=[mu_, sigma_],
method=method
)
code += comment("Sampling")
for y, mu, sigma in supported_combinations:
do_call(y, mu, sigma, SampleMethod.PLAIN)
code += comment("Sampling with lower bound")
for y, mu, sigma in supported_combinations:
do_call(y, mu, sigma, SampleMethod.LOWER)
code += comment("Sampling with upper bound")
for y, mu, sigma in supported_combinations:
do_call(y, mu, sigma, SampleMethod.UPPER)
code += comment("Sampling with range (lower and upper) bounds")
for y, mu, sigma in supported_combinations:
do_call(y, mu, sigma, SampleMethod.RANGE)
return code
# =============================================================================
# Cauchy distribution
# =============================================================================
def get_cauchy_distribution() -> str:
code = """
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Cauchy distribution
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
supported_combinations = [] # type: List[Tuple[VarDescriptor, VarDescriptor, VarDescriptor]] # noqa
for y in ALL_TYPES:
for mu in ALL_TYPES:
for sigma in ALL_TYPES:
if y == REAL and (mu != REAL or sigma != REAL):
continue
if y == ARRAY_2D and (mu != REAL or sigma != REAL):
continue
if mu.dimensions == 2 or sigma.dimensions == 2:
continue
supported_combinations.append((y, mu, sigma))
def do_call(y_: VarDescriptor,
mu_: VarDescriptor,
sigma_: VarDescriptor,
method: SampleMethod):
nonlocal code
# Cloning necessary to prevent name overwriting:
mu_ = mu_.clone()
sigma_ = sigma_.clone()
y_ = y_.clone()
mu_.name = "mu"
sigma_.name = "sigma"
code += sample_generic(
name_caps="Cauchy",
name_lower="cauchy",
y=y_,
distribution_params=[mu_, sigma_],
method=method
)
code += comment("Sampling")
for y, mu, sigma in supported_combinations:
do_call(y, mu, sigma, SampleMethod.PLAIN)
code += comment("Sampling with lower bound")
for y, mu, sigma in supported_combinations:
do_call(y, mu, sigma, SampleMethod.LOWER)
code += comment("Sampling with upper bound")
for y, mu, sigma in supported_combinations:
do_call(y, mu, sigma, SampleMethod.UPPER)
code += comment("Sampling with range (lower and upper) bounds")
for y, mu, sigma in supported_combinations:
do_call(y, mu, sigma, SampleMethod.RANGE)
return code
# =============================================================================
# Beta distribution
# =============================================================================
def get_beta_distribution() -> str:
code = """
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Beta distribution
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
supported_combinations = [] # type: List[Tuple[VarDescriptor, VarDescriptor, VarDescriptor]] # noqa
for y in ALL_TYPES:
for alpha in ALL_TYPES:
for beta in ALL_TYPES:
if y == REAL and (alpha != REAL or beta != REAL):
continue
if y == ARRAY_2D and (alpha != REAL or beta != REAL):
continue
if alpha.dimensions == 2 or beta.dimensions == 2:
continue
supported_combinations.append((y, alpha, beta))
def do_call(y_: VarDescriptor,
alpha_: VarDescriptor,
beta_: VarDescriptor,
method: SampleMethod):
nonlocal code
# Cloning necessary to prevent name overwriting:
alpha_ = alpha_.clone()
beta_ = beta_.clone()
y_ = y_.clone()
alpha_.name = "alpha"
beta_.name = "beta"
code += sample_generic(
name_caps="Beta",
name_lower="beta",
y=y_,
distribution_params=[alpha_, beta_],
method=method
)
code += comment("Sampling")
for y, alpha, beta in supported_combinations:
do_call(y, alpha, beta, SampleMethod.PLAIN)
code += comment("Sampling with lower bound")
for y, alpha, beta in supported_combinations:
do_call(y, alpha, beta, SampleMethod.LOWER)
code += comment("Sampling with upper bound")
for y, alpha, beta in supported_combinations:
do_call(y, alpha, beta, SampleMethod.UPPER)
code += comment("Sampling with range (lower and upper) bounds")
for y, alpha, beta in supported_combinations:
do_call(y, alpha, beta, SampleMethod.RANGE)
return code
# =============================================================================
# Gamma distribution
# =============================================================================
def get_gamma_distribution() -> str:
code = """
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Gamma distribution
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
"""
supported_combinations = [] # type: List[Tuple[VarDescriptor, VarDescriptor, VarDescriptor]] # noqa
for y in ALL_TYPES:
for alpha in ALL_TYPES:
for beta in ALL_TYPES:
if y == REAL and (alpha != REAL or beta != REAL):
continue
if y == ARRAY_2D and (alpha != REAL or beta != REAL):
continue
if alpha.dimensions == 2 or beta.dimensions == 2:
continue
supported_combinations.append((y, alpha, beta))
def do_call(y_: VarDescriptor,
alpha_: VarDescriptor,
beta_: VarDescriptor,
method: SampleMethod):
nonlocal code
# Cloning necessary to prevent name overwriting:
alpha_ = alpha_.clone()
beta_ = beta_.clone()
y_ = y_.clone()
alpha_.name = "alpha"
beta_.name = "beta"
code += sample_generic(
name_caps="Gamma",
name_lower="gamma",
y=y_,
distribution_params=[alpha_, beta_],
method=method
)
code += comment("Sampling")
for y, alpha, beta in supported_combinations:
do_call(y, alpha, beta, SampleMethod.PLAIN)
code += comment("Sampling with lower bound")
for y, alpha, beta in supported_combinations:
do_call(y, alpha, beta, SampleMethod.LOWER)
code += comment("Sampling with upper bound")
for y, alpha, beta in supported_combinations:
do_call(y, alpha, beta, SampleMethod.UPPER)
code += comment("Sampling with range (lower and upper) bounds")
for y, alpha, beta in supported_combinations:
do_call(y, alpha, beta, SampleMethod.RANGE)
return code