-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathhybrid_cifar10.py
executable file
·435 lines (348 loc) · 18 KB
/
hybrid_cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import numpy as np
import math
import timeit
import matplotlib.pyplot as plt
from scipy.ndimage import rotate
from datetime import datetime
import argparse
import sys
import os
os.environ["CUDA_VISIBLE_DEVICES"]="3"
import tensorflow as tf
import layers.optics as optics
import layers.optics_alt as optics_alt
from layers.utils import *
from layers.data_utils import get_CIFAR10_grayscale
# test a model with various constraints
def train(params, summary_every=100, print_every=250, save_every=1000, verbose=True):
# Unpack params
wavelength = params.get('wavelength', 532e-9)
isNonNeg = params.get('isNonNeg', False)
numIters = params.get('numIters', 1000)
activation = params.get('activation', tf.nn.relu)
opt_type = params.get('opt_type', 'ADAM')
# switches
doMultichannelConv = params.get('doMultichannelConv', False)
doMean = params.get('doMean', False)
doOpticalConv = params.get('doOpticalConv', True)
doAmplitudeMask = params.get('doAmplitudeMask', False)
doZernike = params.get('doZernike', False)
doFC = params.get('doFC', False)
doConv1 = params.get('doConv1', True)
doConv2 = params.get('doConv2', True)
doConv3 = params.get('doConv3', False)
doNonnegReg = params.get('doNonnegReg', False)
doOptNeg = params.get('doOptNeg', False)
doTiledConv = params.get('doTiledConv', False)
z_modes = params.get('z_modes', 1024)
convdim1 = params.get('convdim1', 100)
convdim2 = params.get('convdim2', 100)
convdim3 = params.get('convdim3', 100)
depth1 = params.get('depth1', 3)
depth2 = params.get('depth2', 3)
depth3 = params.get('depth3', 3)
padamt = params.get('padamt', 0)
dim = params.get('dim', 60)
buff = params.get('buff', 4)
rows = params.get('rows', 4)
cols = params.get('cols', 4)
# constraint helpers
def nonneg(input_tensor):
return tf.abs(input_tensor) if isNonNeg else input_tensor
def vis_weights(W_conv, depth, buff, rows, cols, name):
kernel_list = tf.split(tf.transpose(W_conv, [2, 0, 1, 3]), depth, axis=3)
kernels_pad = [tf.pad(kernel, [[0,0], [buff, buff], [buff+4, buff+4], [0,0]])
for kernel in kernel_list]
W_conv_tiled = tf.concat([tf.concat(kernels_pad[i*cols:(i+1)*cols], axis=2) for i in range(rows)], axis=1)
tf.summary.image(name, W_conv_tiled, 3)
def vis_h(h_conv, depth, rows, cols, name):
# this was for viewing multichannel convolution
h_conv_split = tf.split(h_conv, depth, axis=3)
h_conv_tiled = tf.concat([tf.concat(h_conv_split[i*cols:(i+1)*cols], axis=2) for i in range(rows)], axis=1)
tf.summary.image(name, h_conv_tiled, 3)
sess = tf.InteractiveSession(config=tf.ConfigProto(allow_soft_placement=True))
# input placeholders
classes = 10
with tf.name_scope('input'):
x = tf.placeholder(tf.float32, shape=[None, 32, 32])
y_ = tf.placeholder(tf.int64, shape=[None])
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(x, [-1, 32, 32, 1])
paddings = tf.constant([[0, 0,], [padamt, padamt], [padamt, padamt], [0, 0]])
x_image = tf.pad(x_image, paddings)
# x_image = tf.image.resize_nearest_neighbor(x_image, size=(dim, dim))
tf.summary.image('input', x_image, 3)
# if not isNonNeg and not doNonnegReg:
# x_image -= tf.reduce_mean(x_image)
# regularizers
global_step = tf.Variable(0, trainable=False)
if doNonnegReg:
reg_scale = tf.train.polynomial_decay(0.,
global_step,
decay_steps=6000,
end_learning_rate=6000.)
psf_reg = optics_alt.nonneg_regularizer(reg_scale)
else:
psf_reg = None
l2_reg = tf.contrib.layers.l2_regularizer(1e-1 , scope=None)
# build model
h_conv_out = x_image
fcdepth = 1
doVis = True
if doConv1:
with tf.name_scope('conv1'):
if doTiledConv:
tiled_dim = (32)*rows
init_vals_pos = tf.truncated_normal([tiled_dim, tiled_dim, 1, 1], stddev=0.1) + .1
W_conv1_tiled = tf.Variable(init_vals_pos, name='W_conv1_tiled')
W_conv1_tiled = nonneg(W_conv1_tiled)
tf.summary.image("W_conv1_tiled", tf.expand_dims(tf.squeeze(W_conv1_tiled, -1), 0))
tile_pad = tiled_dim//2 - 16
tile_paddings = tf.constant([[0, 0,], [tile_pad, tile_pad], [tile_pad, tile_pad], [0, 0]])
x_padded = tf.pad(x_image, tile_paddings)
tf.summary.image('input', x_padded, 3)
fftpadamt = int(tiled_dim/2)
h_conv_tiled = tf.abs(optics.fft_conv2d(fftpad(x_padded, fftpadamt), fftpad_psf(W_conv1_tiled, fftpadamt)))
h_conv_tiled = fftunpad(tf.cast(h_conv_tiled, dtype=tf.float32), fftpadamt)
h_conv_split2d = split2d_layer(h_conv_tiled, rows, cols)
b_conv1 = bias_variable([depth1], 'b_conv1')
h_conv1 = h_conv_split2d + b_conv1
elif doOpticalConv:
tiled_dim = (32)*cols
tile_pad = tiled_dim//2 - 16
tile_paddings = tf.constant([[0, 0,], [tile_pad, tile_pad], [tile_pad, tile_pad], [0, 0]])
x_padded = tf.pad(x_image, tile_paddings)
tf.summary.image('input', x_padded, 3)
r_NA = tiled_dim/2
hm_reg_scale = 1e-2
# initialize with optimized phase mask
# mask = np.load('maskopt/quickdraw9_zernike1024.npy')
# initializer = tf.constant_initializer(mask)
initializer=None
h_conv1_opt = optical_conv_layer(x_padded, hm_reg_scale, r_NA, n=1.48, wavelength=wavelength,
activation=None, amplitude_mask=doAmplitudeMask, zernike=doZernike,
n_modes=z_modes, initializer=initializer, name='opt_conv1_pos')
# h_conv1_opt_neg = optical_conv_layer(x_padded, hm_reg_scale, r_NA, n=1.48, wavelength=wavelength,
# activation=None, amplitude_mask=doAmplitudeMask, zernike=doZernike,
# n_modes=z_modes, initializer=initializer, name='opt_conv1_neg')
h_conv1_opt = tf.cast(h_conv1_opt, dtype=tf.float32)
h_conv_split2d = split2d_layer(h_conv1_opt, 2*rows, cols)
b_conv1 = bias_variable([depth1], 'b_conv1')
h_conv1 = h_conv_split2d + b_conv1
else:
if doOptNeg:
# positive weights
init_vals_pos = tf.truncated_normal([convdim1, convdim1, 1, depth1], stddev=0.1) + .1
W_conv1_pos = tf.Variable(init_vals_pos, name='W_conv1_pos')
# W_conv1 = weight_variable([convdim1, convdim1, 1, depth1], name='W_conv1')
W_conv1_pos = nonneg(W_conv1_pos)
#W_conv1_nonneg /= tf.reduce_sum(tf.abs(W_conv1_nonneg)) # conservation of energy
tf.contrib.layers.apply_regularization(l2_reg, weights_list=[tf.transpose(W_conv1_pos, [3,0,1,2])])
# negative weights
init_vals_neg = tf.truncated_normal([convdim1, convdim1, 1, depth1], stddev=0.1) +.1
W_conv1_neg = tf.Variable(init_vals_neg, name='W_conv1_neg')
# W_conv1 = weight_variable([convdim1, convdim1, 1, depth1], name='W_conv1')
W_conv1_neg = nonneg(W_conv1_neg)
# W_conv1_nonneg /= tf.reduce_sum(tf.abs(W_conv1_nonneg)) # conservation of energy
tf.contrib.layers.apply_regularization(l2_reg, weights_list=[tf.transpose(W_conv1_neg, [3,0,1,2])])
W_conv1 = tf.subtract(W_conv1_pos, W_conv1_neg)
if doVis:
vis_weights(W_conv1_pos, depth1, buff, rows, cols, 'W_conv1_pos')
vis_weights(W_conv1_neg, depth1, buff, rows, cols, 'W_conv1_neg')
elif isNonNeg:
init_vals = tf.truncated_normal([convdim1, convdim1, 1, depth1], stddev=0.1)
W_conv1 = tf.Variable(init_vals, name='W_conv1_nn')+.1
# W_conv1 = weight_variable([convdim1, convdim1, 1, depth1], name='W_conv1')
W_conv1 = nonneg(W_conv1)
#W_conv1_nonneg /= tf.reduce_sum(tf.abs(W_conv1_nonneg)) # conservation of energy
else:
W_conv1 = weight_variable([convdim1, convdim1, 1, depth1], name='W_conv1')
if psf_reg is not None:
tf.contrib.layers.apply_regularization(psf_reg, weights_list=[tf.transpose(W_conv1, [3,0,1,2])])
vis_weights(W_conv1, depth1, buff, rows, cols, 'W_conv1')
W_conv1_flip = tf.reverse(W_conv1, axis=[0,1]) # flip if using tfconv
h_conv1 = conv2d(x_image, W_conv1_flip)
h_conv1 /= tf.reduce_max(h_conv1, axis=[1,2,3], keep_dims=True)
b_conv1 = bias_variable([depth1], 'b_conv1')
h_conv1 = h_conv1 + b_conv1
vis_h(h_conv1, depth1, rows, cols, 'h_conv1')
variable_summaries("h_conv1", h_conv1)
h_conv1_drop = tf.nn.dropout(h_conv1, keep_prob)
#h_pool1 = max_pool_2x2(h_conv1)
h_pool1 = h_conv1_drop
if doNonnegReg:
h_pool1 = optics_alt.shifted_relu(h_pool1)
else:
h_pool1 = activation(h_pool1)
variable_summaries("h_conv1_post", h_pool1)
h_conv_out = h_pool1
#dim = 16
fcdepth = depth1
if doConv2:
with tf.name_scope('conv2'):
W_conv2 = weight_variable([convdim2, convdim2, depth1, depth2], name='W_conv2')
# vis_weights(W_conv2, depth2, buff, rows, cols, 'W_conv2')
b_conv2 = bias_variable([depth2], name='b_conv2')
h_conv2 = conv2d(h_pool1, W_conv2) + b_conv2
# h_pool2 = max_pool_2x2(h_conv2)
h_pool2 = h_conv2
variable_summaries("h_conv2", h_pool2)
h_conv2_drop = tf.nn.dropout(h_pool2, keep_prob)
h_conv2_drop = activation(h_conv2_drop)
variable_summaries("h_conv2_post", h_conv2_drop)
h_conv_out = h_conv2_drop
# dim = 16
fcdepth = depth2
if doConv3:
with tf.name_scope('conv3'):
W_conv3 = weight_variable([convdim3, convdim3, depth2, depth3], name='W_conv3')
# vis_weights(W_conv3, depth3, buff, rows, cols, 'W_conv3')
b_conv3 = bias_variable([depth3], name='b_conv3')
h_conv3 = conv2d(h_pool2, W_conv3) + b_conv3
h_pool3 = max_pool_2x2(h_conv3)
variable_summaries("h_conv3", h_pool3)
h_conv3_drop = tf.nn.dropout(h_pool3, keep_prob)
h_conv3_drop = activation(h_conv3_drop)
variable_summaries("h_conv3_post", h_conv3_drop)
h_conv_out = h_conv3_drop
fcdepth = depth3
dim = 16
# choose output layer here
with tf.name_scope('fc'):
h_conv_out = tf.cast(h_conv_out, dtype=tf.float32)
fcsize = dim*dim*fcdepth
hidden_dim = classes
W_fc1 = weight_variable([fcsize, hidden_dim], name='W_fc1')
b_fc1 = bias_variable([hidden_dim], name='b_fc1')
h_conv_flat = tf.reshape(h_conv_out, [-1, fcsize])
y_out = tf.matmul(h_conv_flat, W_fc1) + b_fc1
# h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# W_fc2 = weight_variable([hidden_dim, classes])
# b_fc2 = bias_variable([classes])
# y_out = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
tf.summary.image('output', tf.reshape(y_out, [-1, 2, 5, 1]), 3)
# loss, train, acc
with tf.name_scope('cross_entropy'):
total_data_loss = tf.nn.softmax_cross_entropy_with_logits(labels=tf.one_hot(y_, classes), logits=y_out)
data_loss = tf.reduce_mean(total_data_loss)
reg_loss = tf.reduce_sum(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
total_loss = tf.add(data_loss, reg_loss)
tf.summary.scalar('data_loss', data_loss)
tf.summary.scalar('reg_loss', reg_loss)
tf.summary.scalar('total_loss', total_loss)
if opt_type == 'ADAM':
train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(total_loss, global_step)
elif opt_type == 'adadelta':
train_step = tf.train.AdadeltaOptimizer(FLAGS.learning_rate_ad, rho=.9).minimize(total_loss, global_step)
else:
train_step = tf.train.MomentumOptimizer(FLAGS.learning_rate, momentum=0.5, use_nesterov=True).minimize(total_loss, global_step)
with tf.name_scope('accuracy'):
correct_prediction = tf.equal(tf.argmax(y_out, 1), y_)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy', accuracy)
losses = []
# tensorboard setup
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph)
test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')
tf.global_variables_initializer().run()
# add ops to save and restore all the variables
saver = tf.train.Saver(max_to_keep=2)
save_path = os.path.join(FLAGS.log_dir, 'model.ckpt')
x_train_all, y_train_all, x_test, y_test, _, _ = get_CIFAR10_grayscale(num_training=49000, num_validation=1000, num_test=0)
num_training = x_train_all.shape[0]
def get_feed(train, batch_size=50, augmentation=False):
idcs = np.random.randint(0, num_training, batch_size)
x = x_train_all[idcs, :, :]
y = y_train_all[idcs]
if augmentation:
angle = np.random.uniform(low=0.0, high=20.0)
x = rotate(x, angle, axes=(2,1), reshape=True)
x = resize(x, (32,32))
return x, y
for i in range(FLAGS.num_iters):
x_train, y_train = get_feed(train=True, augmentation=False)
_, loss, reg_loss_graph, train_accuracy, train_summary = sess.run(
[train_step, total_loss, reg_loss, accuracy, merged],
feed_dict={x: x_train, y_: y_train, keep_prob: FLAGS.dropout})
losses.append(loss)
if i % summary_every == 0:
train_writer.add_summary(train_summary, i)
test_summary, test_accuracy = sess.run([merged, accuracy],
feed_dict={x: x_test, y_: y_test, keep_prob: 1.0})
test_writer.add_summary(test_summary, i)
if verbose:
print('step %d: test acc %g' % (i, test_accuracy))
if i > 0 and i % save_every == 0:
# print("Saving model...")
saver.save(sess, save_path, global_step=i)
if i % print_every == 0:
if verbose:
print('step %d:\t loss %g,\t reg_loss %g,\t train acc %g' %
(i, loss, reg_loss_graph, train_accuracy))
#test_batches = []
# for i in range(4):
# idx = i*500
# batch_acc = accuracy.eval(feed_dict={x: x_test[idx:idx+500, :], y_: y_test[idx:idx+500], keep_prob: 1.0})
# test_batches.append(batch_acc)
# test_acc = np.mean(test_batches)
test_acc = accuracy.eval(feed_dict={x: x_test, y_: y_test, keep_prob: 1.0})
print('final step %d, train accuracy %g, test accuracy %g' %
(i, train_accuracy, test_acc))
#sess.close()
train_writer.close()
test_writer.close()
def main(_):
if tf.gfile.Exists(FLAGS.log_dir):
tf.gfile.DeleteRecursively(FLAGS.log_dir)
tf.gfile.MakeDirs(FLAGS.log_dir)
# try different constraints
params = {}
params['wavelength'] = 532e-9
params['activation'] = tf.nn.relu
params['opt_type'] = 'ADAM'
#params['doMultichannelConv'] = True
params['doTiledConv'] = False
params['doOpticalConv'] = True
params['doAmplitudeMask'] = False
params['doZernike'] = False
params['doFC'] = True
params['isNonNeg'] = True
params['doOptNeg'] = True
params['doNonnegReg'] = False
params['doConv1'] = True
params['doConv2'] = False
params['doConv3'] = False
params['convdim1'] = 9
params['convdim2'] = 5
params['convdim3'] = 3
params['z_modes'] = 1024
params['depth1'] = 8
params['depth2'] = 16
params['depth3'] = 16
params['padamt'] = 0
params['dim'] = 32
params['buff'] = 6
params['rows'] = 2
params['cols'] = 4
train(params, summary_every=200, print_every=100, save_every=1000, verbose=True)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--num_iters', type=int, default=10001,
help='Number of steps to run trainer.')
parser.add_argument('--learning_rate', type=float, default=0.0005,
help='Initial learning rate')
parser.add_argument('--learning_rate_ad', type=float, default=1,
help='Initial learning rate')
parser.add_argument('--dropout', type=float, default=0.5,
help='Keep probability for training dropout.')
now = datetime.now()
runtime = now.strftime('%Y%m%d-%H%M%S')
run_id = 'endtoend/' + runtime + '/'#testing_2'
parser.add_argument(
'--log_dir',
type=str,
default=os.path.join('/media/data/checkpoints/onn/hybrid_cifar10/', run_id),
help='Summaries log directory')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)