-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathhybrid_maskopt.py
executable file
·165 lines (130 loc) · 6.56 KB
/
hybrid_maskopt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import model
import layers.optics as optics
from layers.utils import *
import os
os.environ["CUDA_VISIBLE_DEVICES"]="3"
import numpy as np
import tensorflow as tf
from glob import glob
from datetime import datetime
class PhaseMaskModel(model.Model):
def __init__(self, psf_file,
dim, wave_res,
wavelength,
n, z_file=None, mask_file=None,
ckpt_path=None):
self.dim = dim
self.wave_resolution = wave_res
self.wavelength = wavelength
self.n = n
self.r_NA = wave_res[0]/2
self.psf_file = psf_file
self.mask_file = mask_file
self.z_file = z_file
super(PhaseMaskModel, self).__init__(name='PhaseMask_ONN', ckpt_path=ckpt_path)
def _build_graph(self, x_train, hm_reg_scale, hm_init_type='random_normal'):
#with tf.device('/device:GPU:0'):
sensordims = (self.dim,self.dim)
# Start with input image
input_img = x_train/tf.reduce_sum(x_train)
input_img = tf.image.resize_nearest_neighbor(input_img, size=wave_res)
tf.summary.image('input_image', input_img)
doAmplitudeMask=False
doZernike=False
doFourier=False
doBinaryMask=False
z_modes=350
freq_range=.8
if doBinaryMask: # if additional amplitude mask on top of phase mask
binary_mask = np.load(self.mask_file)
else:
binary_mask = None
output_fullres = optical_conv_layer(input_img, hm_reg_scale, self.r_NA, n=self.n, wavelength=self.wavelength,
coherent=False, amplitude_mask=doAmplitudeMask, zernike=doZernike,
fourier=doFourier, binarymask=doBinaryMask, n_modes=z_modes,
freq_range=freq_range,
binary_mask_np = binary_mask,
zernike_file=self.z_file, name='maskopt')
# Attach images to summary
tf.summary.image('output_fullres', output_fullres)
# output_img = optics.Sensor(input_is_intensities=False, resolution=sensordims)(output_img)
output_img = tf.image.resize_nearest_neighbor(output_fullres, size=sensordims)
return output_img
def _get_data_loss(self, model_output, ground_truth):
model_output = tf.cast(model_output, tf.float32)
ground_truth = tf.cast(ground_truth, tf.float32)
# model_output /= tf.reduce_max(model_output)
ground_truth /= tf.reduce_sum(ground_truth)
with tf.name_scope('data_loss'):
optics.attach_img('model_output', model_output)
optics.attach_img('ground_truth', ground_truth)
loss = tf.reduce_mean(tf.abs(model_output - ground_truth))
return loss
def _get_training_queue(self, batch_size, num_threads=4):
dim = self.dim
file_list = tf.matching_files('/media/data/onn/cifar10padded/im_*.png')
filename_queue = tf.train.string_input_producer(file_list)
image_reader = tf.WholeFileReader()
_, image_file = image_reader.read(filename_queue)
image = tf.image.decode_png(image_file,
channels=1,
dtype=tf.uint8)
image = tf.cast(image, tf.float32) # Shape [height, width, 1]
image = tf.expand_dims(image, 0)
image /= 255.
# Get the ratio of the patch size to the smallest side of the image
img_height_width = tf.cast(tf.shape(image)[1:3], tf.float32)
size_ratio = dim/tf.reduce_min(img_height_width)
# Extract a glimpse from the image
#offset_center = tf.random_uniform([1,2], minval=0.0 + size_ratio/2, maxval=1.0-size_ratio/2, dtype=tf.float32)
offset_center = tf.random_uniform([1,2], minval=0, maxval=0, dtype=tf.float32)
offset_center = offset_center * img_height_width
image = tf.image.extract_glimpse(image, size=[dim,dim], offsets=offset_center, centered=True, normalized=False)
image = tf.squeeze(image, 0)
convolved_image = tf.expand_dims(image, 0)
psf = tf.convert_to_tensor(np.load(self.psf_file), tf.float32)
psf /= tf.reduce_sum(psf)
optics.attach_img('gt_psf', tf.expand_dims(tf.expand_dims(tf.squeeze(psf), 0), -1))
psf = tf.expand_dims(tf.expand_dims(tf.squeeze(psf), -1), -1)
# psf = tf.transpose(psf, [1,2,0,3])
pad = int(dim/2)
convolved_image = tf.abs(optics.fft_conv2d(fftpad(convolved_image, pad), fftpad_psf(psf, pad), adjoint=False))
convolved_image = fftunpad(convolved_image, pad)
convolved_image = tf.squeeze(convolved_image,axis=0)
convolved_image /= tf.reduce_sum(convolved_image)
image_batch, convolved_img_batch = tf.train.batch([image, convolved_image],
shapes=[[dim,dim,1], [dim,dim,1]],
batch_size=batch_size,
num_threads=4,
capacity=4*batch_size)
return image_batch, convolved_img_batch
if __name__=='__main__':
tf.reset_default_graph()
dim = 328
scale = 1
wave_res = np.array((scale*dim,scale*dim))
wavelength = 532e-9
n = 1.5090 # 1.4599
num_steps = 20001
psf_file = 'assets/psf_hybrid_optneg_8x9_1e-1.npy'
phasemask = PhaseMaskModel(psf_file, dim, wave_res, wavelength, n, None, None, ckpt_path=None)
now = datetime.now()
runtime = now.strftime('%Y%m%d-%H%M%S')
run_id = 'optneg_8x9_visual/' + runtime + '/'
log_dir = os.path.join('checkpoints/hybrid_cifar10/', run_id)
if tf.gfile.Exists(log_dir):
tf.gfile.DeleteRecursively(log_dir)
tf.gfile.MakeDirs(log_dir)
phasemask.fit(model_params = {'hm_reg_scale':1e-1},
opt_type = 'ADAM',
#opt_params = {'beta1':0.8, 'beta2':0.999, 'epsilon':1.},
opt_params = {'momentum':0.5, 'use_nesterov':True},
decay_type = 'polynomial',
decay_params = {'decay_steps':num_steps, 'end_learning_rate':1e-9},
batch_size=1,
adadelta_learning_rate = 1,
starter_learning_rate = 0.0005,
num_steps_until_save=2000,
num_steps_until_summary=200,
logdir = log_dir,
num_steps = num_steps)