-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathquantization.py
executable file
·240 lines (188 loc) · 8.44 KB
/
quantization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
"""
Quantization modules using projected gradient-descent, surrogate gradients, and Gumbel-Softmax.
Any questions about the code can be addressed to Suyeon Choi ([email protected])
"""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from PIL import Image
import utils
import hw.ti as ti
from hw.discrete_slm import DiscreteSLM
def load_lut(sim_prop, opt):
lut = None
if hasattr(sim_prop, 'lut'):
if sim_prop.lut is not None:
lut = sim_prop.lut.squeeze().cpu().detach().numpy().tolist()
else:
# here directly sets lut to given 17 level lut,
# no matter what, if quan_method = True, just set it to TI SLM levels
lut = ti.given_lut
if opt.channel is not None:
lut = np.array(lut) * opt.wavelengths[1] / opt.wavelengths[opt.channel]
print("given lut...")
# TODO: work to remove this line
if lut is not None and len(lut) % 2 == 0:
lut.append(lut[0] + 2 * math.pi) # for lut_mid
print(f'LUT: {lut}')
return lut
def tau_iter(quan_fn, iter_frac, tau_min, tau_max, r=None):
if 'softmax' in quan_fn:
if r is None:
r = math.log(tau_max / tau_min)
tau = max(tau_min, tau_max * math.exp(-r * iter_frac))
elif 'sigmoid' in quan_fn or 'poly' in quan_fn:
tau = 1 + 10 * iter_frac
else:
tau = None
return tau
def quantization(opt, lut):
if opt.quan_method == 'None':
qtz = None
else:
qtz = Quantization(opt.quan_method, lut=lut, c=opt.c_s, num_bits=opt.uniform_nbits if lut is None else 4,
tau_max=opt.tau_max, tau_min=opt.tau_min, r=opt.r, offset=opt.phase_offset)
return qtz
def score_phase(phase, lut, s=5., func='sigmoid'):
# Here s is kinda representing the steepness
wrapped_phase = (phase + math.pi) % (2 * math.pi) - math.pi
diff = wrapped_phase - lut
diff = (diff + math.pi) % (2*math.pi) - math.pi # signed angular difference
diff /= math.pi # normalize
if func == 'sigmoid':
z = s * diff
scores = torch.sigmoid(z) * (1 - torch.sigmoid(z)) * 4
elif func == 'log':
scores = -torch.log(diff.abs() + 1e-20) * s
elif func == 'poly':
scores = (1-torch.abs(diff)**s)
elif func == 'sine':
scores = torch.cos(math.pi * (s * diff).clamp(-1., 1.))
elif func == 'chirp':
scores = 1 - torch.cos(math.pi * (1-diff.abs())**s)
return scores
# Basic function for NN-based quantization, customize it with various surrogate gradients!
class NearestNeighborSearch(torch.autograd.Function):
@staticmethod
def forward(ctx, phase, s=torch.tensor(1.0)):
phase_raw = phase.detach()
idx = utils.nearest_idx(phase_raw, DiscreteSLM.lut_midvals)
phase_q = DiscreteSLM.lut[idx]
ctx.mark_non_differentiable(idx)
ctx.save_for_backward(phase_raw, s, phase_q, idx)
return phase_q
def backward(ctx, grad_output):
return grad_output, None
class NearestNeighborPolyGrad(NearestNeighborSearch):
@staticmethod
def forward(ctx, phase, s=torch.tensor(1.0)):
return NearestNeighborSearch.forward(ctx, phase, s)
def backward(ctx, grad_output):
input, s, output, idx = ctx.saved_tensors
grad_input = grad_output.clone()
dx = input - output
d_idx = (dx / torch.abs(dx)).int().nan_to_num()
other_end = DiscreteSLM.lut[(idx + d_idx)].to(input.device) # far end not selected for quantization
# normalization
mid_point = (other_end + output) / 2
gap = torch.abs(other_end - output) + 1e-20
z = (input - mid_point) / gap * 2 # normalize to [-1. 1]
dout_din = (0.5 * s * (1 - abs(z)) ** (s - 1)).nan_to_num()
scale = 2. #* dout_din.mean() / ((dout_din**2).mean() + 1e-20)
grad_input *= (dout_din * scale) # scale according to distance
return grad_input, None
class NearestNeighborSigmoidGrad(NearestNeighborSearch):
@staticmethod
def forward(ctx, phase, s=torch.tensor(1.0)):
return NearestNeighborSearch.forward(ctx, phase, s)
def backward(ctx, grad_output):
x, s, output, idx = ctx.saved_tensors
grad_input = grad_output.clone()
dx = x - output
d_idx = (dx / torch.abs(dx)).int().nan_to_num()
other_end = DiscreteSLM.lut[(idx + d_idx)].to(x.device) # far end not selected for quantization
# normalization
mid_point = (other_end + output) / 2
gap = torch.abs(other_end - output) + 1e-20
z = (x - mid_point) / gap * 2 # normalize to [-1, 1]
z *= s
dout_din = (torch.sigmoid(z) * (1 - torch.sigmoid(z)))
scale = 4. * s#1 / 0.462 * gap * s#dout_din.mean() / ((dout_din**2).mean() + 1e-20) # =100
grad_input *= (dout_din * scale)
return grad_input, None
nns = NearestNeighborSearch.apply
nns_poly = NearestNeighborPolyGrad.apply
nns_sigmoid = NearestNeighborSigmoidGrad.apply
class SoftmaxBasedQuantization(nn.Module):
def __init__(self, lut, gumbel=True, tau_max=3.0, c=300.):
super(SoftmaxBasedQuantization, self).__init__()
if not torch.is_tensor(lut):
self.lut = torch.tensor(lut, dtype=torch.float32)
else:
self.lut = lut
self.lut = self.lut.reshape(1, len(lut), 1, 1)
self.c = c # boost the score
self.gumbel = gumbel
self.tau_max = tau_max
def forward(self, phase, tau=1.0, hard=False):
phase_wrapped = (phase + math.pi) % (2*math.pi) - math.pi
# phase to score
scores = score_phase(phase_wrapped, self.lut.to(phase_wrapped.device), (self.tau_max / tau)**1) * self.c * (self.tau_max / tau)**1.0
# score to one-hot encoding
if self.gumbel: # (N, 1, H, W) -> (N, C, H, W)
one_hot = F.gumbel_softmax(scores, tau=tau, hard=hard, dim=1)
else:
y_soft = F.softmax(scores/tau, dim=1)
index = y_soft.max(1, keepdim=True)[1]
one_hot_hard = torch.zeros_like(scores,
memory_format=torch.legacy_contiguous_format).scatter_(1, index, 1.0)
if hard:
one_hot = one_hot_hard + y_soft - y_soft.detach()
else:
one_hot = y_soft
# one-hot encoding to phase value
q_phase = (one_hot * self.lut.to(one_hot.device))
q_phase = q_phase.sum(1, keepdims=True)
return q_phase
class Quantization(nn.Module):
def __init__(self, method=None, num_bits=4, lut=None, dev=torch.device('cuda'),
tau_min=0.5, tau_max=3.0, r=None, c=300., offset=0.0):
super(Quantization, self).__init__()
if lut is None:
# linear look-up table
DiscreteSLM.lut = torch.linspace(-math.pi, math.pi, 2**num_bits + 1).to(dev)
else:
# non-linear look-up table
assert len(lut) == (2**num_bits) + 1
DiscreteSLM.lut = torch.tensor(lut, dtype=torch.float32).to(dev)
self.quan_fn = None
self.gumbel = 'gumbel' in method.lower()
if method.lower() == 'nn':
self.quan_fn = nns
elif method.lower() == 'nn_sigmoid':
self.quan_fn = nns_sigmoid
elif method.lower() == 'nn_poly':
self.quan_fn = nns_poly
elif 'softmax' in method.lower():
self.quan_fn = SoftmaxBasedQuantization(DiscreteSLM.lut[:-1], self.gumbel, tau_max=tau_max, c=c)
self.method = method
self.tau_min = tau_min
self.tau_max = tau_max
self.r = r
self.offset = offset
def forward(self, input_phase, iter_frac=None, hard=True):
if iter_frac is not None:
tau = tau_iter(self.method, iter_frac, self.tau_min, self.tau_max, self.r)
wrapped_phase = (input_phase + self.offset + math.pi) % (2 * math.pi) - math.pi
if self.quan_fn is None:
return wrapped_phase
else:
if isinstance(tau, float):
tau = torch.tensor(tau, dtype=torch.float32).to(input_phase.device)
if 'nn' in self.method.lower():
s = tau
return self.quan_fn(wrapped_phase, s)
else:
return self.quan_fn(wrapped_phase, tau, hard)