The following publications, in reverse chronological order, have used or cited Fidimag:
[32] Thermal Evolution of Skyrmion Formation Mechanism in Chiral Multilayer Films Phys. Rev. Applied 17, 044039 (2022)
[31] Mutual conversion between a magnetic Néel hopfion and a Néel toron Phys. Rev. B 105, 174407 (2022)
[30] Unveiling the emergent traits of chiral spin textures in magnetic multilayers Advanced Science Vol 9, Iss 6 (2022)
[29] The magnetic genome of two-dimensional van der waals materials ACS Nano 16, 5, 6960–7079 (2022)
[28] L-shaped electrode design for high-density spin–orbit torque magnetic random access memory with perpendicular shape anisotropy J. Phys. D: Appl. Phys. 54 285002 (2021)
[27] Periodically modulated skyrmion strings in Cu2OSeO3, npj Quantum Materials volume 6, Article number: 73 (2021)
[26] Speeding up explicit numerical evaluation methods for micromagnetic simulations using demagnetizing field polynomial extrapolation, IEEE Transactions on Magnetics, Vol 58 Issue 5 (2022)
[25] A Review of Modelling in Ferrimagnetic Spintronics J. Phys. Soc. Jpn. 90, 081001 (2021)
[24] Topological defect-mediated skyrmion annihilation in three dimensions Communications Physics 4, 175 (2021)
[23] Stray Field Calculation for Micromagnetic Simulations Using True Periodic Boundary Conditions Scientific Reports 11, 9202 (2021)
[22] Field-free spin–orbit torque perpendicular magnetization switching in ultrathin nanostructures, npj Computational Materials volume 6, 78 (2020)
[21] Hybrid FFT algorithm for fast demagnetization field calculations on non-equidistant magnetic layers Journal of Magnetism and Magnetic Materials, Volume 503, 166592 (2020)
[20] Review – Micromagnetic Simulation Using OOMMF and Experimental Investigations on Nano Composite Magnets Review – Micromagnetic Simulation Using OOMMF and Experimental Investigations on Nano Composite Magnets, J. Phys.: Conf. Ser. 1172 012070
[19] Spin waves in thin films and magnonic crystals with Dzyaloshinskii-Moriya interactions, arxiv:1903.04288 (2019)
[18] Tomorrow's Micromagnetic Simulations, Journal of Applied Physics 125, 180901 (2019)
[17] [Diameter-independent skyrmion Hall angle in the plastic flow regime observed in chiral magnetic multilayers](https://arxiv.org/pdf/1908.04239.pdf](https://www.nature.com/articles/s41467-019-14232-9), Nature Communications volume 11, Article number: 428 (2020)
[16] Efficient computation of demagnetising fields for magnetic multilayers using multilayered convolution, Journal of Applied Physics 126, 103903 (2019)
[15] Micromagnetics and spintronics: models and numerical methods, Eur. Phys. J. B (2019) 92: 120
[14] Nanoscale magnetic skyrmions and target states in confined geometries, Physical Review B 99, 214408 (2019)
[13] Learning Magnetization Dynamics, Journal of Magnetism and Magnetic Materials Volume 491, (2019)
[12] Computational micromagnetics with Commics, Computer Physics Communications, 248 (2020)
[11] Binding a hopfion in a chiral magnet nanodisk, Physical Review B 98, 174437 (2018)
[10] Proposal for a micromagnetic standard problem for materials with Dzyaloshinskii–Moriya interaction, New Journal of Physics, Volume 20 (2018)
[9] Driving chiral domain walls in antiferromagnets using rotating magnetic fields Physical Review B 97, 184418 (2018)
[8] Fidimag - A Finite Difference Atomistic and Micromagnetic Simulation Package, Journal of Open Research Software, 6(1), p.22. (2018)
[7] Topological Spintronics in Confined Geometry, Y. Liu, PhD Thesis, University of California Riverside (2017)
[6] Thermal stability and topological protection of skyrmions in nanotracks, Scientific Reports 7, 4060 (2017)
[5] Current-induced instability of domain walls in cylindrical nanowires, Journal of Physics: Condensed Matter, 30, 1 (2017)
[4] Magnonic analog of relativistic Zitterbewegung in an antiferromagnetic spin chain, Phys. Rev. B 96 024430 (2017)
[3] Driving magnetic skyrmions with microwave fields Phys. Rev. B 92, 020403 (2015).
[2] Microwave-induced dynamic switching of magnetic skyrmion cores in nanodots Applied Physics Letters 106, 102401 (2015).
[1] Magnon-Driven Domain-Wall Motion with the Dzyaloshinskii-Moriya Interaction Phys. Rev. Lett. 114, 087203 (2015)