-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvalidate_counts_using_NEON_veg_structure_counts.py
304 lines (250 loc) · 13 KB
/
validate_counts_using_NEON_veg_structure_counts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# Author: Mike Gough
# Date created: 07/26/2023
# Python Version: 3.x
# Description:
# This script compares the calculated tree and shrub density results produced by Joe Werne with the in-situ
# counts in the vegetation sampling data produced by NEON: https://data.neonscience.org/data-products/DP1.10098.001
# The output is a CSV file that contains the differences between these values for each value of gamma.
########################################################################################################################
import glob
import os
import csv
import arcpy
import numpy as np
import pandas as pd
arcpy.env.overwriteOutput = True
# Input vars & dirs
#version = "v1"
#veg_structure_dir = r"\\loxodonta\gis\Source_Data\environment\region\NEON_SITES\SOAP\Vegetation_structure\2019\06\NEON_struct-plant\NEON.D17.SOAP.DP1.10098.001.2019-06.basic.20230127T120753Z.RELEASE-2023"
#version = "v2" # Note: not a lot of data. Only 1 plot and 41 apparent individuals. Did not use the data from 03/2020
#veg_structure_dir = r"\\loxodonta\gis\Source_Data\environment\region\NEON_SITES\SOAP\Vegetation_structure\2020\03\NEON_struct-plant\NEON.D17.SOAP.DP1.10098.001.2020-03.basic.20230127T120753Z.RELEASE-2023"
version = "v42" # Note: not a lot of data. Only 1 plot and 41 apparent individuals. Did not use v2.
veg_structure_dir = r"\\loxodonta\gis\Source_Data\environment\region\NEON_SITES\SOAP\Vegetation_structure\2019\06\NEON_struct-plant\NEON.D17.SOAP.DP1.10098.001.2019-06.basic.20230127T120753Z.RELEASE-2023"
input_geotiffs_dir = r"G:\CALFIRE_Decision_support_system_2021_mike_gough\Tasks\NEON\Data\Intermediate\Text_File_to_GeoTiff\v42\geotiff"
plot_filters = None
raster_filters = None
#plot_filters = ["SOAP_010"]
#raster_filters = ["gam010_0_Ns"]
# Intermediate dirs
intermediate_gdb_dir = r"G:\CALFIRE_Decision_support_system_2021_mike_gough\Tasks\NEON\Data\Intermediate\veg_structure"
intermediate_gdb = os.path.join(intermediate_gdb_dir, version + ".gdb")
geotiffs_clip_dir = os.path.join(r"G:\CALFIRE_Decision_support_system_2021_mike_gough\Tasks\NEON\Data\Intermediate\veg_structure\geotiff_clips", version)
tmp_gdb = r"G:\CALFIRE_Decision_support_system_2021_mike_gough\Tasks\NEON\Data\Intermediate\veg_structure\tmp\tmp.gdb"
tmp_dir = r"G:\CALFIRE_Decision_support_system_2021_mike_gough\Tasks\NEON\Data\Intermediate\veg_structure\tmp"
if not arcpy.Exists(intermediate_gdb):
arcpy.CreateFileGDB_management(intermediate_gdb_dir, version)
if not arcpy.Exists(geotiffs_clip_dir):
os.mkdir(geotiffs_clip_dir)
NEON_data_date = veg_structure_dir.split("NEON.")[-1].split(".")[5].replace("-", "_")
# Output file:
output_csv = r"G:\CALFIRE_Decision_support_system_2021_mike_gough\Tasks\NEON\Data\Outputs\CSV\veg_structure_validation\veg_structure_validation_" + version + "_" + NEON_data_date + ".csv"
# CRS Info
arcpy.env.workspace = input_geotiffs_dir
veg_structure_crs = arcpy.SpatialReference(text='PROJCS["WGS_1984_UTM_Zone_11N",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]],PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting",500000.0],PARAMETER["False_Northing",0.0],PARAMETER["Central_Meridian",-117.0],PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_Of_Origin",0.0],UNIT["Meter",1.0]];-5120900 -9998100 450445547.391054;-100000 10000;-100000 10000;0.001;0.001;0.001;IsHighPrecision')
raster_crs = arcpy.Describe(arcpy.ListRasters()[0]).spatialReference
# Derived paths
base_name = "NEON_SOAP_veg_structure_" + NEON_data_date
plot_csv = glob.glob(veg_structure_dir + os.sep + "*perplotperyear*.csv")[0]
apparent_individual_csv = glob.glob(veg_structure_dir + os.sep + "*apparentindividual*.csv")[0]
points = os.path.join(intermediate_gdb, base_name + "_sampling_sites")
buffer = os.path.join(intermediate_gdb, base_name + "_buffer")
mbp = os.path.join(intermediate_gdb, base_name + "_mbp")
mbp_project = os.path.join(intermediate_gdb, base_name + "_mbp_project")
apparent_individual_table_name = base_name + "_apparent_individual"
apparent_individual_table = os.path.join(intermediate_gdb, apparent_individual_table_name)
shrubs_table_name = base_name + "_shrub"
shrubs_table = os.path.join(intermediate_gdb, shrubs_table_name)
trees_table_name = base_name + "_trees"
trees_table = os.path.join(intermediate_gdb, trees_table_name)
summary_statistics_shrubs_i = os.path.join(intermediate_gdb, base_name + "_shrubs_summary_stats_individual")
summary_statistics_trees_i = os.path.join(intermediate_gdb, base_name + "_trees_summary_stats_individual")
summary_statistics_shrubs = os.path.join(intermediate_gdb, base_name + "_shrubs_summary_stats")
summary_statistics_trees = os.path.join(intermediate_gdb, base_name + "_trees_summary_stats")
plot_dict = {}
with open(plot_csv, "r") as csvfile:
reader = csv.reader(csvfile)
next(reader)
for row in reader:
plot_id = row[6]
if (plot_filters and plot_id in plot_filters) or (not plot_filters):
x = row[13]
y = row[14]
plot_dict[plot_id] = {}
plot_dict[plot_id]["x"] = x
plot_dict[plot_id]["y"] = y
plot_dict[plot_id]["shrub_count"] = 0
plot_dict[plot_id]["tree_count"] = 0
def create_plot_fc():
print("\nCreate NEON sampling plot polygon...")
arcpy.management.XYTableToPoint(
in_table=plot_csv,
out_feature_class=points,
x_field="easting",
y_field="northing",
z_field=None,
coordinate_system=veg_structure_crs
)
arcpy.analysis.Buffer(
in_features=points,
out_feature_class=buffer,
buffer_distance_or_field="10 Meters",
line_side="FULL",
line_end_type="ROUND",
dissolve_option="NONE",
dissolve_field=None,
method="PLANAR"
)
arcpy.management.MinimumBoundingGeometry(
in_features=buffer,
out_feature_class=mbp,
geometry_type="ENVELOPE",
group_option="NONE",
group_field=None,
mbg_fields_option="NO_MBG_FIELDS"
)
global mbp_project
if veg_structure_crs != raster_crs:
arcpy.Project_management(mbp, mbp_project, raster_crs)
else:
mbp_project = mbp
def create_NEON_plot_summary_stats():
print("\nCalculate veg structure summary statistics (shrub and tree counts from CSV)...")
arcpy.conversion.TableToTable(
in_rows=apparent_individual_csv,
out_path=intermediate_gdb,
out_name=apparent_individual_table_name,
where_clause="",
config_keyword=""
)
arcpy.conversion.TableToTable(
in_rows=apparent_individual_table,
out_path=intermediate_gdb,
out_name=shrubs_table_name,
where_clause="growthForm LIKE '%shrub%'",
config_keyword=""
)
arcpy.conversion.TableToTable(
in_rows=apparent_individual_table,
out_path=intermediate_gdb,
out_name=trees_table_name,
where_clause="growthForm LIKE '%tree%'",
config_keyword=""
)
arcpy.analysis.Statistics(
in_table=shrubs_table,
out_table=summary_statistics_shrubs_i,
statistics_fields="height MEAN",
case_field="plotID;individualID",
concatenation_separator=""
)
arcpy.analysis.Statistics(
in_table=trees_table,
out_table=summary_statistics_trees_i,
statistics_fields="height MEAN",
case_field="plotID;individualID",
concatenation_separator=""
)
arcpy.AlterField_management(summary_statistics_shrubs_i, "MEAN_height", "shrub_height", "shrub_height")
arcpy.AlterField_management(summary_statistics_trees_i, "MEAN_height", "tree_height", "tree_height")
arcpy.analysis.Statistics(
in_table=summary_statistics_shrubs_i,
out_table=summary_statistics_shrubs,
statistics_fields="shrub_height MEAN;shrub_height MEDIAN;shrub_height MIN;shrub_height MAX;shrub_height STD;shrub_height VARIANCE",
case_field="plotID",
concatenation_separator=""
)
arcpy.analysis.Statistics(
in_table=summary_statistics_trees_i,
out_table=summary_statistics_trees,
statistics_fields="tree_height MEAN;tree_height MEDIAN;tree_height MIN;tree_height MAX;tree_height STD;tree_height VARIANCE",
case_field="plotID",
concatenation_separator=""
)
arcpy.AlterField_management(summary_statistics_shrubs, "FREQUENCY", "COUNT_shrubs", "COUNT_shrubs")
arcpy.AlterField_management(summary_statistics_trees, "FREQUENCY", "COUNT_trees", "COUNT_trees")
def read_NEON_plot_summary_stats():
print("\nRead veg structure summary statistics...")
with arcpy.da.SearchCursor(summary_statistics_shrubs, "*") as sc:
for row in sc:
plot_id = row[1]
if (plot_filters and plot_id in plot_filters) or (not plot_filters):
count = row[2]
mean = round(row[3], 2)
median = round(row[4], 2)
min = round(row[5], 2)
max = round(row[6], 2)
std = round(row[7], 2)
var = round(row[8], 2)
plot_dict[plot_id]["shrub_count"] = count
plot_dict[plot_id]["shrub_h_mean"] = mean
plot_dict[plot_id]["shrub_h_median"] = median
plot_dict[plot_id]["shrub_h_min"] = min
plot_dict[plot_id]["shrub_h_max"] = max
plot_dict[plot_id]["shrub_h_std"] = std
plot_dict[plot_id]["shrub_h_variance"] = var
with arcpy.da.SearchCursor(summary_statistics_trees, "*") as sc:
for row in sc:
plot_id = row[1]
if (plot_filters and plot_id in plot_filters) or (not plot_filters):
count = row[2]
mean = round(row[3], 2)
median = round(row[4], 2)
min = round(row[5], 2)
max = round(row[6], 2)
std = round(row[7], 2)
var = round(row[8], 2)
plot_dict[plot_id]["tree_count"] = count
plot_dict[plot_id]["tree_h_mean"] = mean
plot_dict[plot_id]["tree_h_median"] = median
plot_dict[plot_id]["tree_h_min"] = min
plot_dict[plot_id]["tree_h_max"] = max
plot_dict[plot_id]["tree_h_std"] = std
plot_dict[plot_id]["tree_h_variance"] = var
def extract_inversion_data():
print("\nExtract cell values from inversion geotiffs...")
rasters = arcpy.ListRasters()
with arcpy.da.SearchCursor(mbp_project, ["SHAPE@", "plotID"]) as sc:
for row in sc:
extent = row[0].extent
plot_id = row[1]
if (plot_filters and plot_id in plot_filters) or (not plot_filters):
#arcpy.MakeFeatureLayer_management(mbp_project, "mbp_project_select_" + plot_id, "plotID = '" + plot_id + "'")
#arcpy.CopyFeatures_management(mbp_project_select, tmp_plot)
#arcpy.env.extent=mbp_project
tmp_plot = tmp_gdb + os.sep + "tmp_plot_" + plot_id
expression = "plotID = '" + plot_id + "'"
arcpy.analysis.Select(mbp_project, tmp_plot, expression)
print("Plot ID: " + plot_id)
temp_shrub_diff_dict = {}
temp_tree_diff_dict = {}
for raster in rasters:
if (raster_filters and any(x in raster for x in raster_filters)) or (not raster_filters):
#cells = arcpy.sa.ExtractByRectangle(raster, extent) # This gives cells with centroids outside the extent.
with arcpy.EnvManager(extent=tmp_plot):
cells = arcpy.sa.ExtractByMask(raster, tmp_plot)
save_raster = os.path.join(geotiffs_clip_dir, raster.split(".")[0] + "_clip_" + plot_id + ".tif")
cells.save(save_raster)
arr = arcpy.RasterToNumPyArray(save_raster, nodata_to_value=0)
sum = round(np.sum(arr), 2)
raster_basename = raster.split(".")[0]
plot_dict[plot_id][raster_basename] = sum
if "_Ns" in raster:
shrub_diff = round(plot_dict[plot_id]["shrub_count"] - sum, 2)
temp_shrub_diff_dict[raster_basename + "_diff"] = shrub_diff
if "_NT" in raster:
tree_diff = round(plot_dict[plot_id]["tree_count"] - sum, 2)
temp_tree_diff_dict[raster_basename + "_diff"] = tree_diff
for k, v in temp_shrub_diff_dict.items():
plot_dict[plot_id][k] = v
for k, v in temp_tree_diff_dict.items():
plot_dict[plot_id][k] = v
def write_to_csv():
print("\nWrite to CSV...")
df = pd.DataFrame.from_dict(plot_dict, orient="index")
df.index.name = "plotID"
df.to_csv(output_csv, index=True, header=True)
create_plot_fc()
create_NEON_plot_summary_stats()
read_NEON_plot_summary_stats()
extract_inversion_data()
write_to_csv()