-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathOllama.ts
551 lines (507 loc) · 17 KB
/
Ollama.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
import { JSONSchema7, JSONSchema7Object } from "json-schema";
import { ChatMessage, CompletionOptions, LLMOptions } from "../../index.js";
import { renderChatMessage } from "../../util/messageContent.js";
import { BaseLLM } from "../index.js";
import { streamResponse } from "../stream.js";
type OllamaChatMessage = {
role: "tool" | "user" | "assistant" | "system";
content: string;
images?: string[] | null;
tool_calls?: {
function: {
name: string;
arguments: JSONSchema7Object;
};
}[];
};
// See https://github.com/ollama/ollama/blob/main/docs/modelfile.md for details on each parameter
interface OllamaModelFileParams {
mirostat?: number;
mirostat_eta?: number;
mirostat_tau?: number;
num_ctx?: number;
repeat_last_n?: number;
repeat_penalty?: number;
temperature?: number;
seed?: number;
stop?: string | string[];
tfs_z?: number;
num_predict?: number;
top_k?: number;
top_p?: number;
min_p?: number;
// deprecated or not directly supported here:
num_thread?: number;
use_mmap?: boolean;
num_gqa?: number;
num_gpu?: number;
num_keep?: number;
typical_p?: number;
presence_penalty?: number;
frequency_penalty?: number;
penalize_newline?: boolean;
numa?: boolean;
num_batch?: number;
main_gpu?: number;
low_vram?: boolean;
vocab_only?: boolean;
use_mlock?: boolean;
}
// See https://github.com/ollama/ollama/blob/main/docs/api.md
interface OllamaBaseOptions {
model: string; // the model name
options?: OllamaModelFileParams; // additional model parameters listed in the documentation for the Modelfile such as temperature
format?: "json"; // the format to return a response in. Currently, the only accepted value is json
stream?: boolean; // if false the response will be returned as a single response object, rather than a stream of objects
keep_alive?: number; // controls how long the model will stay loaded into memory following the request (default: 5m)
}
interface OllamaRawOptions extends OllamaBaseOptions {
prompt: string; // the prompt to generate a response for
suffix?: string; // the text after the model response
images?: string[]; // a list of base64-encoded images (for multimodal models such as llava)
system?: string; // system message to (overrides what is defined in the Modelfile)
template?: string; // the prompt template to use (overrides what is defined in the Modelfile)
context?: string; // the context parameter returned from a previous request to /generate, this can be used to keep a short conversational memory
raw?: boolean; // if true no formatting will be applied to the prompt. You may choose to use the raw parameter if you are specifying a full templated prompt in your request to the API
}
interface OllamaChatOptions extends OllamaBaseOptions {
messages: OllamaChatMessage[]; // the messages of the chat, this can be used to keep a chat memory
tools?: OllamaTool[]; // the tools of the chat, this can be used to keep a tool memory
// Not supported yet - tools: tools for the model to use if supported. Requires stream to be set to false
// And correspondingly, tool calls in OllamaChatMessage
}
type OllamaBaseResponse = {
model: string;
created_at: string;
} & (
| {
done: false;
}
| {
done: true;
done_reason: string;
total_duration: number; // Time spent generating the response in nanoseconds
load_duration: number; // Time spent loading the model in nanoseconds
prompt_eval_count: number; // Number of tokens in the prompt
prompt_eval_duration: number; // Time spent evaluating the prompt in nanoseconds
eval_count: number; // Number of tokens in the response
eval_duration: number; // Time spent generating the response in nanoseconds
context: number[]; // An encoding of the conversation used in this response; can be sent in the next request to keep conversational memory
}
);
type OllamaErrorResponse = {
error: string;
};
type OllamaRawResponse =
| OllamaErrorResponse
| (OllamaBaseResponse & {
response: string; // the generated response
});
type OllamaChatResponse =
| OllamaErrorResponse
| (OllamaBaseResponse & {
message: OllamaChatMessage;
});
interface OllamaTool {
type: "function";
function: {
name: string;
description?: string;
parameters?: JSONSchema7;
};
}
class Ollama extends BaseLLM {
static providerName = "ollama";
static defaultOptions: Partial<LLMOptions> = {
apiBase: "http://localhost:11434/",
model: "codellama-7b",
maxEmbeddingBatchSize: 64,
};
private fimSupported: boolean = false;
constructor(options: LLMOptions) {
super(options);
if (options.model === "AUTODETECT") {
return;
}
this.fetch(this.getEndpoint("api/show"), {
method: "POST",
headers: {
Authorization: `Bearer ${this.apiKey}`,
"Content-Type": "application/json",
},
body: JSON.stringify({ name: this._getModel() }),
})
.then(async (response) => {
if (response?.status !== 200) {
// console.warn(
// "Error calling Ollama /api/show endpoint: ",
// await response.text(),
// );
return;
}
const body = await response.json();
if (body.parameters) {
const params = [];
for (const line of body.parameters.split("\n")) {
let parts = line.match(/^(\S+)\s+((?:".*")|\S+)$/);
if (parts.length < 2) {
continue;
}
let key = parts[1];
let value = parts[2];
switch (key) {
case "num_ctx":
this.contextLength =
options.contextLength ?? Number.parseInt(value);
break;
case "stop":
if (!this.completionOptions.stop) {
this.completionOptions.stop = [];
}
try {
this.completionOptions.stop.push(JSON.parse(value));
} catch (e) {
console.warn(
`Error parsing stop parameter value "{value}: ${e}`,
);
}
break;
default:
break;
}
}
}
/**
* There is no API to get the model's FIM capabilities, so we have to
* make an educated guess. If a ".Suffix" variable appears in the template
* it's a good indication the model supports FIM.
*/
this.fimSupported = !!body?.template?.includes(".Suffix");
})
.catch((e) => {
// console.warn("Error calling the Ollama /api/show endpoint: ", e);
});
}
// Map of "continue model name" to Ollama actual model name
private modelMap: Record<string, string> = {
"mistral-7b": "mistral:7b",
"mixtral-8x7b": "mixtral:8x7b",
"llama2-7b": "llama2:7b",
"llama2-13b": "llama2:13b",
"codellama-7b": "codellama:7b",
"codellama-13b": "codellama:13b",
"codellama-34b": "codellama:34b",
"codellama-70b": "codellama:70b",
"llama3-8b": "llama3:8b",
"llama3-70b": "llama3:70b",
"llama3.1-8b": "llama3.1:8b",
"llama3.1-70b": "llama3.1:70b",
"llama3.1-405b": "llama3.1:405b",
"llama3.2-1b": "llama3.2:1b",
"llama3.2-3b": "llama3.2:3b",
"llama3.2-11b": "llama3.2:11b",
"llama3.2-90b": "llama3.2:90b",
"phi-2": "phi:2.7b",
"phind-codellama-34b": "phind-codellama:34b-v2",
"qwen2.5-coder-0.5b": "qwen2.5-coder:0.5b",
"qwen2.5-coder-1.5b": "qwen2.5-coder:1.5b",
"qwen2.5-coder-3b": "qwen2.5-coder:3b",
"qwen2.5-coder-7b": "qwen2.5-coder:7b",
"qwen2.5-coder-14b": "qwen2.5-coder:14b",
"qwen2.5-coder-32b": "qwen2.5-coder:32b",
"wizardcoder-7b": "wizardcoder:7b-python",
"wizardcoder-13b": "wizardcoder:13b-python",
"wizardcoder-34b": "wizardcoder:34b-python",
"zephyr-7b": "zephyr:7b",
"codeup-13b": "codeup:13b",
"deepseek-1b": "deepseek-coder:1.3b",
"deepseek-7b": "deepseek-coder:6.7b",
"deepseek-33b": "deepseek-coder:33b",
"neural-chat-7b": "neural-chat:7b-v3.3",
"starcoder-1b": "starcoder:1b",
"starcoder-3b": "starcoder:3b",
"starcoder2-3b": "starcoder2:3b",
"stable-code-3b": "stable-code:3b",
"granite-code-3b": "granite-code:3b",
"granite-code-8b": "granite-code:8b",
"granite-code-20b": "granite-code:20b",
"granite-code-34b": "granite-code:34b",
};
private _getModel() {
return this.modelMap[this.model] ?? this.model;
}
private _getModelFileParams(
options: CompletionOptions,
): OllamaModelFileParams {
return {
temperature: options.temperature,
top_p: options.topP,
top_k: options.topK,
num_predict: options.maxTokens,
stop: options.stop,
num_ctx: this.contextLength,
mirostat: options.mirostat,
num_thread: options.numThreads,
use_mmap: options.useMmap,
min_p: options.minP,
};
}
private _convertToOllamaMessage(message: ChatMessage): OllamaChatMessage {
const ollamaMessage: OllamaChatMessage = {
role: message.role,
content: "",
};
ollamaMessage.content = renderChatMessage(message);
if (Array.isArray(message.content)) {
const images: string[] = [];
message.content.forEach((part) => {
if (part.type === "imageUrl" && part.imageUrl) {
const image = part.imageUrl?.url.split(",").at(-1);
if (image) {
images.push(image);
}
}
});
if (images.length > 0) {
ollamaMessage.images = images;
}
}
return ollamaMessage;
}
private _getGenerateOptions(
options: CompletionOptions,
prompt: string,
suffix?: string,
): OllamaRawOptions {
return {
model: this._getModel(),
prompt,
suffix,
raw: options.raw,
options: this._getModelFileParams(options),
keep_alive: options.keepAlive ?? 60 * 30, // 30 minutes
stream: options.stream,
// Not supported yet: context, images, system, template, format
};
}
private getEndpoint(endpoint: string): URL {
let base = this.apiBase;
if (process.env.IS_BINARY) {
base = base?.replace("localhost", "127.0.0.1");
}
return new URL(endpoint, base);
}
protected async *_streamComplete(
prompt: string,
signal: AbortSignal,
options: CompletionOptions,
): AsyncGenerator<string> {
const response = await this.fetch(this.getEndpoint("api/generate"), {
method: "POST",
headers: {
"Content-Type": "application/json",
Authorization: `Bearer ${this.apiKey}`,
},
body: JSON.stringify(this._getGenerateOptions(options, prompt)),
signal,
});
let buffer = "";
for await (const value of streamResponse(response)) {
// Append the received chunk to the buffer
buffer += value;
// Split the buffer into individual JSON chunks
const chunks = buffer.split("\n");
buffer = chunks.pop() ?? "";
for (let i = 0; i < chunks.length; i++) {
const chunk = chunks[i];
if (chunk.trim() !== "") {
try {
const j = JSON.parse(chunk) as OllamaRawResponse;
if ("error" in j) {
throw new Error(j.error);
}
yield j.response;
} catch (e) {
throw new Error(`Error parsing Ollama response: ${e} ${chunk}`);
}
}
}
}
}
protected async *_streamChat(
messages: ChatMessage[],
signal: AbortSignal,
options: CompletionOptions,
): AsyncGenerator<ChatMessage> {
const ollamaMessages = messages.map(this._convertToOllamaMessage);
const chatOptions: OllamaChatOptions = {
model: this._getModel(),
messages: ollamaMessages,
options: this._getModelFileParams(options),
keep_alive: options.keepAlive ?? 60 * 30, // 30 minutes
stream: options.stream,
// format: options.format, // Not currently in base completion options
};
// This logic is because tools can ONLY be included with user message for ollama
if (options.tools?.length && ollamaMessages.at(-1)?.role === "user") {
chatOptions.tools = options.tools.map((tool) => ({
type: "function",
function: {
name: tool.function.name,
description: tool.function.description,
parameters: tool.function.parameters,
},
}));
chatOptions.stream = false; // Cannot set stream = true for tools calls
}
const response = await this.fetch(this.getEndpoint("api/chat"), {
method: "POST",
headers: {
"Content-Type": "application/json",
Authorization: `Bearer ${this.apiKey}`,
},
body: JSON.stringify(chatOptions),
signal,
});
function convertChatMessage(res: OllamaChatResponse): ChatMessage {
if ("error" in res) {
throw new Error(res.error);
}
if (res.message.role === "tool") {
throw new Error(
"Unexpected message received from ollama with role = tool",
);
}
if (res.message.role === "assistant") {
const chatMessage: ChatMessage = {
role: "assistant",
content: res.message.content,
};
if (res.message.tool_calls) {
// Continue handles the response as a tool call delta but
// But ollama returns the full object in one response with no streaming
chatMessage.toolCalls = res.message.tool_calls.map((tc) => ({
type: "function",
function: {
name: tc.function.name,
arguments: JSON.stringify(tc.function.arguments),
},
}));
}
return chatMessage;
} else {
return {
role: res.message.role,
content: res.message.content,
};
}
}
if (chatOptions.stream === false) {
const json = (await response.json()) as OllamaChatResponse;
yield convertChatMessage(json);
} else {
let buffer = "";
for await (const value of streamResponse(response)) {
// Append the received chunk to the buffer
buffer += value;
// Split the buffer into individual JSON chunks
const chunks = buffer.split("\n");
buffer = chunks.pop() ?? "";
for (let i = 0; i < chunks.length; i++) {
const chunk = chunks[i];
if (chunk.trim() !== "") {
try {
const j = JSON.parse(chunk) as OllamaChatResponse;
const chatMessage = convertChatMessage(j);
yield chatMessage;
} catch (e) {
throw new Error(`Error parsing Ollama response: ${e} ${chunk}`);
}
}
}
}
}
}
supportsFim(): boolean {
return this.fimSupported;
}
protected async *_streamFim(
prefix: string,
suffix: string,
signal: AbortSignal,
options: CompletionOptions,
): AsyncGenerator<string> {
const response = await this.fetch(this.getEndpoint("api/generate"), {
method: "POST",
headers: {
"Content-Type": "application/json",
Authorization: `Bearer ${this.apiKey}`,
},
body: JSON.stringify(this._getGenerateOptions(options, prefix, suffix)),
signal,
});
let buffer = "";
for await (const value of streamResponse(response)) {
// Append the received chunk to the buffer
buffer += value;
// Split the buffer into individual JSON chunks
const chunks = buffer.split("\n");
buffer = chunks.pop() ?? "";
for (let i = 0; i < chunks.length; i++) {
const chunk = chunks[i];
if (chunk.trim() !== "") {
try {
const j = JSON.parse(chunk);
if ("response" in j) {
yield j.response;
} else if ("error" in j) {
throw new Error(j.error);
}
} catch (e) {
throw new Error(`Error parsing Ollama response: ${e} ${chunk}`);
}
}
}
}
}
async listModels(): Promise<string[]> {
const response = await this.fetch(
// localhost was causing fetch failed in pkg binary only for this Ollama endpoint
this.getEndpoint("api/tags"),
{
method: "GET",
},
);
const data = await response.json();
if (response.ok) {
return data.models.map((model: any) => model.name);
} else {
throw new Error(
"Failed to list Ollama models. Make sure Ollama is running.",
);
}
}
protected async _embed(chunks: string[]): Promise<number[][]> {
const resp = await this.fetch(new URL("api/embed", this.apiBase), {
method: "POST",
body: JSON.stringify({
model: this.model,
input: chunks,
}),
headers: {
"Content-Type": "application/json",
Authorization: `Bearer ${this.apiKey}`,
},
});
if (!resp.ok) {
throw new Error(`Failed to embed chunk: ${await resp.text()}`);
}
const data = await resp.json();
const embedding: number[][] = data.embeddings;
if (!embedding || embedding.length === 0) {
throw new Error("Ollama generated empty embedding");
}
return embedding;
}
}
export default Ollama;