-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathprelang.y
920 lines (804 loc) · 25.1 KB
/
prelang.y
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
%{
#line 3 "prelang.y"
/* The first line is to give proper line number references. Please mail me
* if your compiler complains about it.
*/
/*
* This is the grammar definition of LPC. The token table is built
* automatically by make_func. The lang.y is constructed from this file,
* the generated token list and post_lang.y. The reason of this is that there
* is no #include-statment that yacc recognizes.
*/
#include <inttypes.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <memory.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "config.h"
#include "lint.h"
#include "interface.h"
#include "object.h"
#include "instrs.h"
#include "incralloc.h"
#include "mstring.h"
#include "simulate.h"
#include "backend.h"
#include "lex.h"
#include "efun_table.h"
/* This is to see to it that we always go through xalloc() in main.c
even from within the yacc-parser
*/
#ifdef malloc
#undef malloc
#endif
#define malloc xalloc
#define YYMAXDEPTH 600
#define BREAK_ON_STACK 0x40000
#define BREAK_FROM_CASE 0x80000
/* make shure that this struct has a size that is a power of two */
struct case_heap_entry { long long key; offset_t addr; short line; };
#define CASE_HEAP_ENTRY_ALIGN(offset) offset &= -sizeof(struct case_heap_entry)
static struct mem_block mem_block[NUMAREAS];
static int has_inherited;
/*
* Some good macros to have.
*/
#define BASIC_TYPE(e,t) ((e) == TYPE_ANY ||\
(e) == (t) ||\
(t) == TYPE_ANY)
#define TYPE(e,t) (BASIC_TYPE((e) & TYPE_MASK, (t) & TYPE_MASK) ||\
(((e) & TYPE_MOD_POINTER) && ((t) & TYPE_MOD_POINTER) &&\
BASIC_TYPE((e) & (TYPE_MASK & ~TYPE_MOD_POINTER),\
(t) & (TYPE_MASK & ~TYPE_MOD_POINTER))))
#define FUNCTION(n) ((struct function *)mem_block[A_FUNCTIONS].block + (n))
#define VARIABLE(n) ((struct variable *)mem_block[A_VARIABLES].block + (n))
#define INHERIT(n) ((struct inherit *)mem_block[A_INHERITS].block + (n))
#define align(x) ( ((x) + (sizeof(double)-1) ) & ~(sizeof(double)-1) )
/*
* If the type of the function is given, then strict types are
* checked and required.
*/
static int exact_types;
extern int pragma_strict_types; /* Maintained by lex.c */
extern int pragma_save_binary; /* Save this in the binary shadow dir */
extern int pragma_no_inherit;
extern int pragma_no_shadow;
extern int pragma_no_clone;
extern struct object *auto_ob;
static int true_varargs;
extern int total_num_prog_blocks, total_prog_block_size;
extern int num_parse_error;
extern int d_flag;
static offset_t current_break_address;
static offset_t current_continue_address;
static offset_t current_case_address;
static offset_t current_case_number_heap;
static offset_t current_case_string_heap;
static int try_level, break_try_level, continue_try_level;
#define SOME_NUMERIC_CASE_LABELS 0x40000
#define NO_STRING_CASE_LABELS 0x80000
static int zero_case_label;
static int current_type;
static char *get_type_name(int);
/*
* There is always function starting at address 0, which will execute
* the initialization code. This code is spread all over the program,
* with jumps to next initializer. The next variable keeps track of
* the previous jump. After the last initializer, the jump will be changed
* into a return(0) statement instead.
*
* A function named '.CTOR' will be defined, which will contain the
* initialization code. If there was no initialization code, then the
* function will not be defined. That is the usage of the
* first_last_initializer_end variable.
*
* When inheriting from another object, a call will automatically be made
* to call .CTOR in that code from the current .CTOR.
*/
static offset_t last_initializer_end;
static offset_t first_last_initializer_end;
void epilog (void);
static int check_declared (char *str);
static void prolog (void);
static void push_address (void);
static offset_t pop_address (void);
static offset_t make_label (void);
static void transfer_init_control (void);
static char *get_two_types (int, int);
static int verify_declared (char *);
static int handle_function_id (char *);
static void copy_inherits (struct program *, int, char *);
static int check_inherits(struct program *);
static int search_for_ext_function(char *, struct program *);
static struct program NULL_program; /* marion - clean neat empty struct */
void init_lineno_info(void);
void end_lineno_info(void);
static void push_init_arg_address (offset_t);
static void clear_init_arg_stack (void);
void free_all_local_names (void);
int lookup_local_name(char *);
int add_local_name (char *, int);
void smart_log (char *, int, char *);
extern int yylex (void);
void type_error (char *, int);
char *inner_get_srccode_position(int code, struct lineno *lineno, int lineno_count,
char *inc_files, char *name);
int search_for_function(char *name, struct program *prog);
int handle_include(char *name, int ignore_errors);
INLINE static unsigned mem_block_size(int, int);
extern int current_line;
/*
* 'inherit_file' is used as a flag. If it is set to a string
* after yyparse(), this string should be loaded as an object,
* and the original object must be loaded again.
*/
extern char *current_file, *inherit_file;
/*
* The names and types of arguments and auto variables.
*/
static unsigned short type_of_locals[MAX_LOCAL];
static int local_blockdepth[MAX_LOCAL];
static char *local_names[MAX_LOCAL];
static int current_number_of_locals = 0;
static int max_number_of_locals = 0;
/*
* The types of arguments when calling functions must be saved,
* to be used afterwards for checking. And because function calls
* can be done as an argument to a function calls,
* a stack of argument types is needed. This stack does not need to
* be freed between compilations, but will be reused.
*/
struct mem_block type_of_arguments;
struct program *prog; /* Is returned to the caller of yyparse */
/*
* Compare two types, and return true if they are compatible.
*/
static int
compatible_types(int t1, int t2)
{
if (t1 == TYPE_UNKNOWN || t2 == TYPE_UNKNOWN)
return 0;
if (t1 == t2)
return 1;
if ((t1|TYPE_MOD_NO_MASK|TYPE_MOD_STATIC|TYPE_MOD_PRIVATE|TYPE_MOD_PUBLIC)
== (t2|TYPE_MOD_NO_MASK|TYPE_MOD_STATIC|TYPE_MOD_PRIVATE|TYPE_MOD_PUBLIC))
return 1;
if (t1 == TYPE_ANY || t2 == TYPE_ANY)
return 1;
if ((t1 & TYPE_MOD_POINTER) && (t2 & TYPE_MOD_POINTER)) {
if ((t1 & TYPE_MASK) == (TYPE_ANY|TYPE_MOD_POINTER) ||
(t2 & TYPE_MASK) == (TYPE_ANY|TYPE_MOD_POINTER))
return 1;
}
if (t1 == TYPE_MAPPING)
return 1;
return 0;
}
/*
* Add another argument type to the argument type stack
*/
INLINE
static void
add_arg_type(unsigned short type)
{
struct mem_block *mbp = &type_of_arguments;
while (mbp->current_size + sizeof type > mbp->max_size) {
mbp->max_size <<= 1;
mbp->block = realloc(mbp->block, (size_t)mbp->max_size);
}
(void)memcpy(mbp->block + mbp->current_size, &type, sizeof type);
mbp->current_size += sizeof type;
}
/*
* Pop the argument type stack 'n' elements.
*/
INLINE
static void
pop_arg_stack(int n)
{
type_of_arguments.current_size -= sizeof (unsigned short) * n;
}
/*
* Get type of argument number 'arg', where there are
* 'n' arguments in total in this function call. Argument
* 0 is the first argument.
*/
INLINE
int
get_argument_type(int arg, int n)
{
return((unsigned short *)(type_of_arguments.block + type_of_arguments.current_size))[arg - n];
}
INLINE
static void
add_to_mem_block(int n, void *data, int size)
{
struct mem_block *mbp = &mem_block[n];
while (mbp->current_size + size > mbp->max_size) {
mbp->max_size <<= 1;
mbp->block = realloc(mbp->block, (size_t)mbp->max_size);
}
memcpy(mbp->block + mbp->current_size, data, (size_t)size);
mbp->current_size += size;
}
INLINE static unsigned
mem_block_size(int n, int size)
{
return mem_block[n].current_size / size;
}
INLINE static void
ins_byte(char b)
{
add_to_mem_block(A_PROGRAM, &b, 1);
}
static INLINE void
upd_byte(offset_t offset, char l)
{
mem_block[A_PROGRAM].block[offset] = l;
}
static INLINE char
read_byte(offset_t offset)
{
return mem_block[A_PROGRAM].block[offset];
}
/*
* Store a 2 byte number. It is stored in such a way as to be sure
* that correct byte order is used, regardless of machine architecture.
* Also beware that some machines can't write a word to odd addresses.
*/
static INLINE void
ins_short(int32_t t)
{
if (t >= UINT16_MAX) {
fatal("Attempt to insert a too large short.");
}
int16_t val = t;
add_to_mem_block(A_PROGRAM, &val, sizeof(val));
}
static INLINE void
upd_address(offset_t offset, offset_t val)
{
memcpy(&mem_block[A_PROGRAM].block[offset], &val, sizeof(val));
}
static INLINE short
read_short(offset_t offset)
{
return *(short *)&mem_block[A_PROGRAM].block[offset];
}
static offset_t
read_address(offset_t offset)
{
static offset_t out;
memcpy(&out, &mem_block[A_PROGRAM].block[offset], sizeof(offset_t));
return out;
}
static void
ins_address(offset_t l)
{
add_to_mem_block(A_PROGRAM, &l, sizeof(l));
}
static INLINE void
ins_mem(void *data, size_t n)
{
add_to_mem_block(A_PROGRAM, data, n);
}
static INLINE void
ins_long_long(long long ll)
{
add_to_mem_block(A_PROGRAM, &ll, sizeof(ll));
}
/*
* Return 1 on success, 0 on failure.
*/
static int
defined_function(char *s)
{
int offset;
int inh;
struct function *funp;
char *super_name = 0;
char *sub_name;
char *real_name;
char *search;
real_name = strrchr(s, ':') + 1;
sub_name = strchr(s, ':') + 2;
real_name = (find_sstring((real_name == (char *)1) ? s : real_name));
if(!real_name) {
return 0;
}
if (sub_name == (char *)2)
for (offset = 0; offset < mem_block[A_FUNCTIONS].current_size;
offset += sizeof (struct function))
{
funp = (struct function *)&mem_block[A_FUNCTIONS].block[offset];
/* Only index, prog, and type will be defined. */
if (real_name == funp->name)
{
function_index_found = offset / sizeof (struct function);
function_prog_found = 0;
function_type_mod_found = funp->type_flags & TYPE_MOD_MASK;
function_inherit_found = mem_block[A_INHERITS].current_size / sizeof(struct inherit);
return 1;
}
}
else
if (sub_name - s > 2)
{
super_name = alloca((size_t)(sub_name - s - 1));
(void)memcpy(super_name, s, (size_t)(sub_name - s - 2));
super_name[sub_name - s - 2] = 0;
if (strcmp(super_name, "this") == 0)
return defined_function(sub_name);
}
else
s = sub_name;
/* Look for the function in the inherited programs
*/
for (inh = mem_block[A_INHERITS].current_size / sizeof (struct inherit) - 1;
inh >= 0; inh -= ((struct inherit *)(mem_block[A_INHERITS].block))[inh].prog->
num_inherited)
{
if (super_name &&
strcmp(super_name, ((struct inherit *)(mem_block[A_INHERITS].block))[inh].name) == 0)
search = sub_name;
else
search = s;
if (search_for_ext_function (search,
((struct inherit *)(mem_block[A_INHERITS].block))[inh].prog))
{
/* Adjust for inherit-type */
int type = ((struct inherit *)mem_block[A_INHERITS].block)[inh].type;
if (function_type_mod_found & TYPE_MOD_PRIVATE)
type &= ~TYPE_MOD_PUBLIC;
if (function_type_mod_found & TYPE_MOD_PUBLIC)
type &= ~TYPE_MOD_PRIVATE;
function_type_mod_found |= type & TYPE_MOD_MASK;
function_inherit_found += inh -
(((struct inherit *)(mem_block[A_INHERITS].block))[inh].prog->
num_inherited - 1);
return 1;
}
}
return 0;
}
/*
* A mechanism to remember addresses on a stack. The size of the stack is
* defined in config.h.
*/
static offset_t comp_stackp;
static offset_t comp_stack[COMPILER_STACK_SIZE];
static INLINE void
push_address()
{
if (comp_stackp >= COMPILER_STACK_SIZE) {
yyerror("Compiler stack overflow");
comp_stackp++;
return;
}
comp_stack[comp_stackp++] = mem_block[A_PROGRAM].current_size;
}
static INLINE offset_t
get_address(void)
{
return mem_block[A_PROGRAM].current_size;
}
static INLINE void
push_explicit(offset_t address)
{
if (comp_stackp >= COMPILER_STACK_SIZE) {
yyerror("Compiler stack overflow");
comp_stackp++;
return;
}
comp_stack[comp_stackp++] = address;
}
static INLINE offset_t
pop_address()
{
if (comp_stackp == 0)
fatal("Compiler stack underflow.\n");
if (comp_stackp > COMPILER_STACK_SIZE) {
--comp_stackp;
return 0;
}
offset_t ret = comp_stack[--comp_stackp];
return ret;
}
static INLINE void
add_jump(void)
{
offset_t offset = mem_block[A_PROGRAM].current_size;
add_to_mem_block(A_JUMPS, (char *)&offset, sizeof (offset));
}
static void
define_new_function(char *name, char num_arg, unsigned char num_local, offset_t offset, int type_flags, char first_default)
{
struct function fun;
struct function *funp;
unsigned short argument_start_index;
if (defined_function (name))
{
/* The function is already defined.
* If it was defined by inheritance, make a new definition,
* unless nomask applies.
* If it was defined in the current program, use that definition.
*/
/* Point to the function definition found
*/
if (function_prog_found)
{
funp = &function_prog_found->functions[function_index_found];
}
else
funp = FUNCTION(function_index_found);
/* If it was declared in the current program, and not a prototype,
* it is a double definition.
*/
if (!(funp->type_flags & NAME_PROTOTYPE) &&
!function_prog_found)
{
char buff[500];
(void)snprintf(buff, sizeof(buff), "Redeclaration of function %s", name);
yyerror (buff);
return;
}
/* If neither the new nor the old definition is a prototype,
* it must be a redefinition of an inherited function.
* Check for nomask.
*/
if ((funp->type_flags & TYPE_MOD_NO_MASK) &&
!(funp->type_flags & NAME_PROTOTYPE))
{
char buff[500];
(void)snprintf(buff, sizeof(buff), "Illegal to redefine nomask function %s", name);
yyerror (buff);
return;
}
/* Check types
*/
if (exact_types &&
((funp->type_flags & TYPE_MASK) != TYPE_UNKNOWN))
{
if (funp->num_arg != num_arg &&
!(funp->type_flags & TYPE_MOD_VARARGS))
{
yyerror("Incorrect number of arguments");
return;
}
/*
* This is just a nuisance! /JnA
else if (!(funp->type_flags & NAME_STRICT_TYPES))
{
yyerror("Function called not compiled with type testing");
return;
}
*/
#if 0
else
{
int i;
/* Now check argument types
*/
for (i=0; i < num_arg; i++)
{
}
}
#endif
}
/* If it is a prototype for a function that has already been defined,
* we don't need it.
*/
if ((type_flags & NAME_PROTOTYPE) && !function_prog_found)
return;
/* If the function was defined in an inherited program, we need to
* make a new definition here.
*/
if (function_prog_found) {
funp = &fun;
}
}
else { /* Function was not defined before, we need a new definition */
funp = &fun;
}
#ifdef PROFILE_LPC
funp->num_calls = 0;
funp->time_spent = 0;
funp->tot_time_spent = 0;
funp->avg_calls = 0;
funp->avg_time = 0;
funp->avg_tot_time = 0;
funp->last_call_update = 0;
#endif
funp->offset = offset;
funp->type_flags = type_flags;
funp->num_arg = num_arg;
funp->num_local = num_local;
funp->first_default = first_default;
funp->hash_idx = -1;
if (exact_types)
funp->type_flags |= NAME_STRICT_TYPES;
if (!exact_types || num_arg == 0) {
argument_start_index = INDEX_START_NONE;
}
else
{
int i;
/*
* Save the start of argument types.
*/
argument_start_index =
mem_block[A_ARGUMENT_TYPES].current_size /
sizeof (unsigned short);
for (i=0; i < num_arg; i++)
add_to_mem_block(A_ARGUMENT_TYPES, (char *)&type_of_locals[i],
sizeof type_of_locals[i]);
}
if (funp == &fun)
{
funp->name = make_sstring(name);
add_to_mem_block (A_FUNCTIONS, (char *)&fun, sizeof fun);
add_to_mem_block(A_ARGUMENT_INDEX, (char *)&argument_start_index,
sizeof argument_start_index);
}
else
{
(void)memcpy(&mem_block[A_ARGUMENT_INDEX].
block[function_index_found * sizeof(argument_start_index)],
(char *)&argument_start_index, sizeof(argument_start_index));
}
return;
}
static INLINE int
is_simul_efun (char *name)
{
if (simul_efun_ob != 0 && search_for_function (name, simul_efun_ob->prog) &&
!(function_type_mod_found & (TYPE_MOD_PRIVATE | TYPE_MOD_STATIC)))
return 1;
return 0;
}
static void
define_variable(char *name, int type)
{
struct variable dummy;
int n;
n = check_declared(name);
if (n != -1 && (n & TYPE_MOD_NO_MASK))
{
char *p = (char *)alloca(80 + strlen(name));
(void)sprintf(p, "Illegal to redefine 'nomask' variable \"%s\"", name);
yyerror(p);
}
dummy.name = make_sstring(name);
dummy.type = type;
variable_index_found = mem_block_size(A_VARIABLES,sizeof(struct variable));
variable_inherit_found = 255;
add_to_mem_block(A_VARIABLES, (char *)&dummy, sizeof dummy);
}
unsigned short
store_prog_string(char *str)
{
unsigned short addr;
int i;
for (i = mem_block[A_STRTAB].current_size - sizeof(short); i >= 0; i -= sizeof(short))
{
char *str2;
unsigned short offset;
((char *)&offset)[0] = mem_block[A_STRTAB].block[i];
((char *)&offset)[1] = mem_block[A_STRTAB].block[i + 1];
str2 = mem_block[A_RODATA].block + offset;
if (strcmp(str, str2) == 0)
return offset;
}
if (mem_block[A_RODATA].current_size >= 0x10000)
{
yyerror("Too large rodata segment!\n");
mem_block[A_RODATA].current_size = 0;
}
addr = mem_block[A_RODATA].current_size;
add_to_mem_block(A_STRTAB, (char *)&addr, sizeof(addr));
add_to_mem_block(A_RODATA, str, (int)strlen(str) + 1);
return addr;
}
struct label
{
offset_t address;
offset_t link;
};
#define EMPTY_LABEL (OFFSET_MAX - 1)
static offset_t
make_label()
{
static struct label lbl = { EMPTY_LABEL, EMPTY_LABEL };
offset_t ret;
ret = mem_block[A_LABELS].current_size / sizeof(struct label);
add_to_mem_block(A_LABELS, (char *)&lbl, sizeof(lbl));
return ret;
}
static void
ins_label(offset_t lbl)
{
struct label *l;
offset_t here = mem_block[A_PROGRAM].current_size;
l = &((struct label *)mem_block[A_LABELS].block)[lbl];
if (l->address != EMPTY_LABEL)
ins_address(l->address);
else
{
ins_address(l->link);
l->link = here;
}
}
static void
set_label(offset_t lbl, offset_t addr)
{
struct label *l;
offset_t link1, next;
l = ((struct label *)mem_block[A_LABELS].block) + lbl;
l->address = addr;
for (link1 = l->link; link1 != EMPTY_LABEL; link1 = next)
{
next = read_address(link1);
upd_address(link1, addr);
}
l->link = EMPTY_LABEL;
}
static INLINE long long cmp_case_keys(struct case_heap_entry *entry1,
struct case_heap_entry *entry2, int is_str)
{
if (is_str)
return strcmp(mem_block[A_RODATA].block + (unsigned short)entry1->key,
mem_block[A_RODATA].block + (unsigned short)entry2->key);
else
return entry1->key - entry2->key;
}
void
add_to_case_heap(int block_index, struct case_heap_entry *entry, struct case_heap_entry *entry2)
{
int current_heap;
struct case_heap_entry *heap_top, *heap_entry;
int is_str;
int from, to, size;
if (block_index == A_CASE_NUMBERS )
{
current_heap = current_case_number_heap;
is_str = 0;
}
else
{
current_heap = current_case_string_heap;
is_str = 1;
}
if (entry2 && cmp_case_keys(entry, entry2, is_str) > 0)
return;
heap_top = (struct case_heap_entry *)(mem_block[block_index].block + mem_block[block_index].current_size);
heap_entry = (struct case_heap_entry *)(mem_block[block_index].block + current_heap);
for (; heap_entry < heap_top; heap_entry++)
{
if (cmp_case_keys(heap_entry, entry, is_str) > 0)
break;
if (heap_entry->addr == OFFSET_MAX)
{
/* Range entry, compare next also */
if (cmp_case_keys(++heap_entry, entry, is_str) >= 0)
{
/* Duplicate case label! */
char buff[100];
(void)sprintf(buff, "Duplicate case label (line %d)",
heap_entry->line);
yyerror(buff);
break;
}
}
}
if (heap_entry < heap_top &&
(!cmp_case_keys(heap_entry, entry, is_str) ||
(entry2 && (cmp_case_keys(entry2, heap_entry, is_str) >= 0))))
{
/* Duplicate case label! */
char buff[100];
(void)sprintf(buff, "Duplicate case label (line %d)",
heap_entry->line);
yyerror(buff);
}
to = ((char *)(heap_entry + 1 + (entry2 != NULL))) -
mem_block[block_index].block;
from = ((char *)heap_entry) - mem_block[block_index].block;
size = (heap_top - heap_entry) * sizeof(*entry);
add_to_mem_block(block_index, (char *)entry, sizeof(*entry));
if (entry2)
add_to_mem_block(block_index, (char *)entry2, sizeof(*entry2));
if (heap_entry != heap_top)
{
(void)memmove(mem_block[block_index].block + to,
mem_block[block_index].block + from, (size_t)size);
(void)memcpy(mem_block[block_index].block + from, entry, sizeof(*entry));
if (entry2)
(void)memcpy(mem_block[block_index].block + from + sizeof(*entry),
entry2, sizeof(*entry));
}
}
/*
* Arrange a jump to the current position for the initialization code
* to continue.
*/
static void
transfer_init_control()
{
if (mem_block[A_PROGRAM].current_size - 2 == last_initializer_end) {
mem_block[A_PROGRAM].current_size -= 3;
}
else
{
/*
* Change the address of the last jump after the last
* initializer to this point.
*/
upd_address(last_initializer_end, mem_block[A_PROGRAM].current_size);
}
}
#define DEREFSIZE 256
static int deref_stack[DEREFSIZE];
static int deref_index;
void add_new_init_jump(void);
static offset_t init_arg_stack[256];
static int init_arg_stack_index;
static void INLINE
clear_init_arg_stack()
{
init_arg_stack_index = 0;
}
static void INLINE
push_init_arg_address(offset_t address)
{
init_arg_stack[init_arg_stack_index++] = address;
}
static void ins_f_byte(unsigned int);
/* ARGSUSED1 */
void
dump_init_arg_table(int arg)
{
int i;
#if defined(DEBUG)
if (num_parse_error == 0 && init_arg_stack_index != arg)
fatal("Not correct number of init addresses!\n");
#endif
for (i = 0; i < init_arg_stack_index; i++)
ins_address(init_arg_stack[i]);
}
%}
/*
* These values are used by the stack machine, and can not be directly
* called from LPC.
*/
%token F_EXT F_JUMP F_JUMP_WHEN_ZERO F_JUMP_WHEN_NON_ZERO F_SKIP_NZ
%token F_POP_VALUE F_DUP
%token F_CALL_NON_VIRT F_CALL_VIRT
%token F_PUSH_IDENTIFIER_LVALUE F_PUSH_LOCAL_VARIABLE_LVALUE
%token F_PUSH_INDEXED_LVALUE F_INDIRECT F_INDEX
%token F_CONST0 F_CONST1
%token F_CALL_VAR F_BUILD_CLOSURE F_PAPPLY
/*
* These are the predefined functions that can be accessed from LPC.
*/
%token F_IDENTIFIER
%token F_RETURN F_STRING F_FLOATC
%token F_INC F_DEC
%token F_POST_INC F_POST_DEC
%token F_NUMBER F_ASSIGN F_ADD F_SUBTRACT F_MULTIPLY
%token F_DIVIDE F_LT F_GT F_EQ F_GE F_LE
%token F_NE
%token F_ADD_EQ F_SUB_EQ F_DIV_EQ F_MULT_EQ
%token F_NEGATE
%token F_SWITCH
%token F_SSCANF F_PARSE_COMMAND F_STRING_DECL F_LOCAL_NAME
%token F_MOD F_MOD_EQ
%token F_STATIC
%token F_ARROW F_AGGREGATE F_M_AGGREGATE
%token F_COMPL F_AND F_AND_EQ F_OR F_OR_EQ F_XOR F_XOR_EQ
%token F_LSH F_LSH_EQ F_RSH F_RSH_EQ F_NOT
%token F_TRY F_END_TRY F_FOREACH F_FOREACH_M
%token F_CATCH F_END_CATCH F_CALL_C F_CALL_SIMUL
%token F_RANGE F_THROW