-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathplotting.go
436 lines (404 loc) · 11.8 KB
/
plotting.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
// Copyright 2015 The Goga Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package goga
import (
"math"
"github.com/cpmech/gosl/io"
"github.com/cpmech/gosl/plt"
"github.com/cpmech/gosl/utl"
)
// PlotParams holds parameters to customize plots
type PlotParams struct {
// output directory and filename
DirOut string // output directory; default = "/tmp/goga"
FnKey string // filename key
// auxiliary
YfuncX YfuncX_t // y(x) function to plot from FltMin[iFlt] to FltMax[iFlt]
NptsYfX int // number of points for y(x) function
Extra func() // extra plotting commands
// options
NoF bool // without f(x)
NoG bool // without g(x)
NoH bool // without h(x)
WithAux bool // plot Solution.Aux (with the same colors as g(x))
OnlyAux bool // plot only Solution.Aux
Limits bool // plot limits of variables in contour
FeasibleOnly bool // plot feasible solutions only
WithAll bool // with all points
NoFront bool // do not show Pareto front
Simple bool // simple contour
Npts int // number of points for contour
IdxH int // index of h function to plot. -1 means all
RefX []float64 // reference x vector with the other values in case Nflt > 2
Xrange []float64 // to override x-range
Yrange []float64 // to override y-range
ContourAt string // if RefX==nil, options: "minimum", "maximum", "middle", "best" (default)
Xlabel string // x-axis label
Ylabel string // y-axis label
// plot arguments
AxEqual bool // plot: equal scales
ArgsLeg *plt.A // plot: arguments for legend
ArgsF *plt.A // plot: f(x) function
ArgsG *plt.A // plot: g(x) function
ArgsH *plt.A // plot: h(x) function
ArgsAux *plt.A // plot: format for auxiliary field
ArgsSols0 *plt.A // plot: points indicating initial solutions
ArgsSols *plt.A // plot: points indicating final solutions
ArgsBest *plt.A // plot: points indicating best solution
ArgsFront *plt.A // plot: points on Pareto front
ArgsYfX *plt.A // plot: y(x) function
ArgsSimple *plt.A // plot: simple contours
}
// NewPlotParams allocates and sets default PlotParams
func NewPlotParams(simple bool) (o *PlotParams) {
// output directory and filename
o = new(PlotParams)
o.DirOut = "/tmp/goga"
o.FnKey = "plt-goga"
// auxiliary
o.NptsYfX = 101
o.Npts = 21
// plot arguments
o.ArgsLeg = &plt.A{CmapIdx: 0, LegOut: true, LegNcol: 4, LegHlen: 1.5}
o.ArgsF = &plt.A{}
o.ArgsG = &plt.A{Colors: []string{"y"}, Levels: []float64{0}, Lw: 2}
o.ArgsH = &plt.A{Colors: []string{"y"}, Levels: []float64{0}, Lw: 2}
o.ArgsAux = &plt.A{Colors: []string{"y"}, Levels: []float64{0}, Lw: 2}
o.ArgsSols0 = &plt.A{C: "k", M: "o", Ms: 3, Ls: "none", L: "initial"}
o.ArgsSols = &plt.A{C: "m", M: "o", Ms: 7, Ls: "none", L: "final", Void: true}
o.ArgsBest = &plt.A{C: "#00b30d", M: "*", Ms: 6, Ls: "none", Mec: "white", Mew: 0.3, L: "best"}
o.ArgsFront = &plt.A{C: "r", M: ".", Ms: 6, Ls: "none", Mec: "black", Mew: 0.3, L: "front"}
o.ArgsYfX = &plt.A{C: "b", Ls: "--", L: "y(x)"}
o.ArgsSimple = &plt.A{Colors: []string{"y"}, Levels: []float64{0}, Lw: 2}
// options
o.Simple = simple
if simple {
o.ArgsSols.C = "#00b30d"
o.ArgsBest.C = "red"
o.ArgsBest.Mec = "black"
}
return
}
// PlotContour plots contour with other components @ x=RefX
// If RefX==nil, x can be either @ minimum, maximum, middle or best
// For x @ best, Solutions will be sorted
// Input:
// pp -- plotting parameters [may be nil]
func (o *Optimiser) PlotContour(iFlt, jFlt, iOva int, pp *PlotParams) {
// check
var x []float64
if pp == nil {
pp = NewPlotParams(false)
}
if pp.RefX == nil {
x = make([]float64, o.Nflt)
switch pp.ContourAt {
case "minimum":
copy(x, o.FltMin)
case "maximum":
copy(x, o.FltMax)
case "middle":
for k := 0; k < o.Nflt; k++ {
x[k] = (o.FltMin[k] + o.FltMax[k]) / 2.0
}
default:
SortSolutions(o.Solutions, 0)
copy(x, o.Solutions[0].Flt)
}
} else {
x = make([]float64, len(pp.RefX))
copy(x, pp.RefX)
}
// limits and meshgrid
xmin, xmax := o.FltMin[iFlt], o.FltMax[iFlt]
ymin, ymax := o.FltMin[jFlt], o.FltMax[jFlt]
if pp.Xrange != nil {
xmin, xmax = pp.Xrange[0], pp.Xrange[1]
}
if pp.Yrange != nil {
ymin, ymax = pp.Yrange[0], pp.Yrange[1]
}
// check objective function
var sol *Solution // copy of solution for objective function
if o.MinProb == nil {
pp.NoG = true
pp.NoH = true
sol = NewSolution(o.Nsol, 0, &o.Parameters)
o.Solutions[0].CopyInto(sol)
if pp.RefX != nil {
copy(sol.Flt, pp.RefX)
}
}
// auxiliary variables
X, Y := utl.MeshGrid2d(xmin, xmax, ymin, ymax, pp.Npts, pp.Npts)
var Zf [][]float64
var Zg [][][]float64
var Zh [][][]float64
var Za [][]float64
if !pp.NoF {
Zf = utl.Alloc(pp.Npts, pp.Npts)
}
if o.Ng > 0 && !pp.NoG {
Zg = utl.Deep3alloc(o.Ng, pp.Npts, pp.Npts)
}
if o.Nh > 0 && !pp.NoH {
Zh = utl.Deep3alloc(o.Nh, pp.Npts, pp.Npts)
}
if pp.WithAux {
Za = utl.Alloc(pp.Npts, pp.Npts)
}
// compute values
grp := 0
for i := 0; i < pp.Npts; i++ {
for j := 0; j < pp.Npts; j++ {
x[iFlt], x[jFlt] = X[i][j], Y[i][j]
if o.MinProb == nil {
copy(sol.Flt, x)
o.ObjFunc(sol, grp)
if !pp.NoF {
Zf[i][j] = sol.Ova[iOva]
}
if pp.WithAux {
Za[i][j] = sol.Aux
}
} else {
o.MinProb(o.F[grp], o.G[grp], o.H[grp], x, nil, grp)
if !pp.NoF {
Zf[i][j] = o.F[grp][iOva]
}
if !pp.NoG {
for k, g := range o.G[grp] {
Zg[k][i][j] = g
}
}
if !pp.NoH {
for k, h := range o.H[grp] {
Zh[k][i][j] = h
}
}
}
}
}
// plot f
if !pp.NoF && !pp.OnlyAux {
if pp.Simple {
plt.ContourL(X, Y, Zf, pp.ArgsSimple)
} else {
plt.ContourF(X, Y, Zf, pp.ArgsF)
}
}
// plot g
if !pp.NoG && !pp.OnlyAux {
for _, g := range Zg {
plt.ContourL(X, Y, g, pp.ArgsG)
}
}
// plot h
if !pp.NoH && !pp.OnlyAux {
for i, h := range Zh {
if i == pp.IdxH || pp.IdxH < 0 {
plt.ContourL(X, Y, h, pp.ArgsH)
}
}
}
// plot aux
if pp.WithAux {
plt.ContourL(X, Y, Za, pp.ArgsAux)
}
// limits
if pp.Limits {
plt.Plot(
[]float64{o.FltMin[iFlt], o.FltMax[iFlt], o.FltMax[iFlt], o.FltMin[iFlt], o.FltMin[iFlt]},
[]float64{o.FltMin[jFlt], o.FltMin[jFlt], o.FltMax[jFlt], o.FltMax[jFlt], o.FltMin[jFlt]},
nil,
)
}
}
// PlotAddFltFlt adds flt-flt points to existent plot
func (o *Optimiser) PlotAddFltFlt(iFlt, jFlt int, sols []*Solution, args *plt.A) {
nsol := len(sols)
x, y := make([]float64, nsol), make([]float64, nsol)
for i, sol := range sols {
x[i], y[i] = sol.Flt[iFlt], sol.Flt[jFlt]
}
plt.Plot(x, y, args)
}
// PlotAddFltOva adds flt-ova points to existent plot
func (o *Optimiser) PlotAddFltOva(iFlt, iOva int, sols []*Solution, ovaMult float64, args *plt.A) {
nsol := len(sols)
x, y := make([]float64, nsol), make([]float64, nsol)
for i, sol := range sols {
x[i], y[i] = sol.Flt[iFlt], sol.Ova[iOva]*ovaMult
}
plt.Plot(x, y, args)
}
// PlotAddOvaOva adds ova-ova points to existent plot
func (o *Optimiser) PlotAddOvaOva(iOva, jOva int, sols []*Solution, feasibleOnly bool, args *plt.A) {
var x, y []float64
for _, sol := range sols {
if sol.Feasible() || !feasibleOnly {
x = append(x, sol.Ova[iOva])
y = append(y, sol.Ova[jOva])
}
}
plt.Plot(x, y, args)
}
// PlotAddParetoFront highlights Pareto front
func (o *Optimiser) PlotAddParetoFront(iOva, jOva int, sols []*Solution, feasibleOnly bool, args *plt.A) {
x, y, _ := GetParetoFront(iOva, jOva, sols, feasibleOnly)
plt.Plot(x, y, args)
}
// PlotFltOva plots flt-ova points
func (o *Optimiser) PlotFltOva(sols0 []*Solution, iFlt, iOva int, ovaMult float64, pp *PlotParams) {
if pp.YfuncX != nil {
X := utl.LinSpace(o.FltMin[iFlt], o.FltMax[iFlt], pp.NptsYfX)
Y := make([]float64, pp.NptsYfX)
for i := 0; i < pp.NptsYfX; i++ {
Y[i] = pp.YfuncX(X[i])
}
plt.Plot(X, Y, pp.ArgsYfX)
}
if sols0 != nil {
o.PlotAddFltOva(iFlt, iOva, sols0, ovaMult, pp.ArgsSols0)
}
o.PlotAddFltOva(iFlt, iOva, o.Solutions, ovaMult, pp.ArgsSols)
best, _ := GetBestFeasible(o, iOva)
if best != nil {
plt.PlotOne(best.Flt[iFlt], best.Ova[iOva]*ovaMult, pp.ArgsBest)
}
if pp.Extra != nil {
pp.Extra()
}
if pp.AxEqual {
plt.Equal()
}
plt.Gll(io.Sf("$x_{%d}$", iFlt), io.Sf("$f_{%d}$", iOva), &plt.A{LegOut: true, LegNcol: 4, LegHlen: 1.5})
plt.Save(pp.DirOut, pp.FnKey)
}
// PlotFltFlt plots flt-flt contour
// use iFlt==-1 || jFlt==-1 to plot all combinations
func (o *Optimiser) PlotFltFltContour(sols0 []*Solution, iFlt, jFlt, iOva int, pp *PlotParams) {
best, _ := GetBestFeasible(o, iOva)
plotAll := iFlt < 0 || jFlt < 0
plotCommands := func(i, j int) {
o.PlotContour(i, j, iOva, pp)
if sols0 != nil {
o.PlotAddFltFlt(i, j, sols0, pp.ArgsSols0)
}
o.PlotAddFltFlt(i, j, o.Solutions, pp.ArgsSols)
if best != nil {
plt.PlotOne(best.Flt[i], best.Flt[j], pp.ArgsBest)
}
if pp.Extra != nil {
pp.Extra()
}
if pp.AxEqual {
plt.Equal()
}
}
if plotAll {
idx := 1
ncol := o.Nflt - 1
for row := 0; row < o.Nflt; row++ {
idx += row
for col := row + 1; col < o.Nflt; col++ {
plt.Subplot(ncol, ncol, idx)
plt.SplotGap(0.0, 0.0)
plotCommands(col, row)
if col > row+1 {
plt.SetXnticks(0)
plt.SetYnticks(0)
} else {
plt.Gll(io.Sf("$x_{%d}$", col), io.Sf("$x_{%d}$", row), nil)
}
idx++
}
}
idx = ncol*(ncol-1) + 1
plt.Subplot(ncol, ncol, idx)
plt.AxisOff()
// TODO: fix formatting of open marker, add star to legend
plt.LegendX([]*plt.A{pp.ArgsSols0, pp.ArgsSols, pp.ArgsBest}, pp.ArgsLeg)
} else {
plotCommands(iFlt, jFlt)
plt.Gll(io.Sf("$x_{%d}$", iFlt), io.Sf("$x_{%d}$", jFlt), pp.ArgsLeg)
}
plt.Save(pp.DirOut, pp.FnKey)
}
// PlotOvaOvaPareto plots ova-ova Pareto values
func (o *Optimiser) PlotOvaOvaPareto(sols0 []*Solution, iOva, jOva int, pp *PlotParams) {
if sols0 != nil {
o.PlotAddOvaOva(iOva, jOva, sols0, pp.FeasibleOnly, pp.ArgsSols0)
}
if pp.WithAll {
o.PlotAddOvaOva(iOva, jOva, o.Solutions, pp.FeasibleOnly, pp.ArgsSols)
}
if !pp.NoFront {
o.PlotAddParetoFront(iOva, jOva, o.Solutions, pp.FeasibleOnly, pp.ArgsFront)
}
if pp.Extra != nil {
pp.Extra()
}
xl, yl := io.Sf("$f_{%d}$", iOva), io.Sf("$f_{%d}$", jOva)
if pp.Xlabel != "" {
xl = pp.Xlabel
}
if pp.Ylabel != "" {
yl = pp.Ylabel
}
plt.Gll(xl, yl, pp.ArgsLeg)
plt.Save(pp.DirOut, pp.FnKey)
}
// PlotStar plots star with normalised OVAs
func (o *Optimiser) PlotStar() {
nf := o.Nf
dθ := 2.0 * math.Pi / float64(nf)
θ0 := 0.0
if nf == 3 {
θ0 = -math.Pi / 6.0
}
for _, ρ := range []float64{0.25, 0.5, 0.75, 1.0} {
plt.Circle(0, 0, ρ, &plt.A{Ec: "grey", Lw: 0.5})
}
arrowM, textM := 1.1, 1.15
for i := 0; i < nf; i++ {
θ := θ0 + float64(i)*dθ
xi, yi := 0.0, 0.0
xf, yf := arrowM*math.Cos(θ), arrowM*math.Sin(θ)
plt.Arrow(xi, yi, xf, yf, &plt.A{Scale: 10, Style: "->", Lw: 0.7})
plt.PlotOne(xf, yf, &plt.A{C: "k", M: "+"})
xf, yf = textM*math.Cos(θ), textM*math.Sin(θ)
plt.Text(xf, yf, io.Sf("%d", i), nil)
}
X, Y := make([]float64, nf+1), make([]float64, nf+1)
clr := false
neg := false
step := 1
count := 0
colors := []string{"m", "orange", "g", "r", "b", "k"}
var ρ float64
for i, sol := range o.Solutions {
if sol.Feasible() && sol.FrontId == 0 && i%step == 0 {
for j := 0; j < nf; j++ {
if neg {
ρ = 1.0 - sol.Ova[j]/(o.RptFmax[j]-o.RptFmin[j])
} else {
ρ = sol.Ova[j] / (o.RptFmax[j] - o.RptFmin[j])
}
θ := θ0 + float64(j)*dθ
X[j], Y[j] = ρ*math.Cos(θ), ρ*math.Sin(θ)
}
X[nf], Y[nf] = X[0], Y[0]
if clr {
j := count % len(colors)
plt.Plot(X, Y, &plt.A{C: colors[j], Ms: 3})
} else {
plt.Plot(X, Y, &plt.A{C: "r", M: ".", Ms: 3})
}
count++
}
}
plt.Equal()
plt.AxisOff()
}