forked from freemint/fdlibm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathe_cosh.c
111 lines (94 loc) · 2.82 KB
/
e_cosh.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
/* @(#)e_cosh.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* Optimized by Ulrich Drepper <[email protected]>, 2011 */
/* __ieee754_cosh(x)
* Method :
* mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2
* 1. Replace x by |x| (cosh(x) = cosh(-x)).
* 2.
* [ exp(x) - 1 ]^2
* 0 <= x <= ln2/2 : cosh(x) := 1 + -------------------
* 2*exp(x)
*
* exp(x) + 1/exp(x)
* ln2/2 <= x <= 22 : cosh(x) := -------------------
* 2
* 22 <= x <= lnovft : cosh(x) := exp(x)/2
* lnovft <= x <= ln2ovft: cosh(x) := exp(x/2)/2 * exp(x/2)
* ln2ovft < x : cosh(x) := hugeval*hugeval (overflow)
*
* Special cases:
* cosh(x) is |x| if x is +INF, -INF, or NaN.
* only cosh(0)=1 is exact for finite x.
*/
#ifndef __FDLIBM_H__
#include "fdlibm.h"
#endif
#ifndef __have_fpu_cosh
double __ieee754_cosh(double x)
{
double t, w;
int32_t ix;
uint32_t lx;
static const double one = 1.0;
static const double half = 0.5;
static const double hugeval = 1.0e300;
/* High word of |x|. */
GET_HIGH_WORD(ix, x);
ix &= IC(0x7fffffff);
/* x is INF or NaN */
if (ix >= IC(0x7ff00000))
return x * x;
/* |x| in [0,22] */
if (ix < IC(0x40360000))
{
/* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */
if (ix < IC(0x3fd62e43))
{
t = __ieee754_expm1(__ieee754_fabs(x));
w = one + t;
if (ix < IC(0x3c800000))
return w; /* cosh(tiny) = 1 */
return one + (t * t) / (w + w);
}
/* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */
t = __ieee754_exp(__ieee754_fabs(x));
return half * t + half / t;
}
/* |x| in [22, log(maxdouble)] return half*exp(|x|) */
if (ix < IC(0x40862E42))
return half * __ieee754_exp(__ieee754_fabs(x));
/* |x| in [log(maxdouble), overflowthresold] */
GET_LOW_WORD(lx, x);
if (ix < IC(0x408633ce) || (ix == IC(0x408633ce) && lx <= UC(0x8fb9f87d)))
{
w = __ieee754_exp(half * __ieee754_fabs(x));
t = half * w;
return t * w;
}
/* |x| > overflowthresold, cosh(x) overflow */
return hugeval * hugeval;
}
#endif
/* wrapper cosh */
double __cosh(double x)
{
double z = __ieee754_cosh(x);
if (_LIB_VERSION != _IEEE_ && !isfinite(z) && isfinite(x))
return __kernel_standard(x, x, z, KMATHERR_COSH); /* cosh overflow */
return z;
}
__typeof(__cosh) cosh __attribute__((weak, alias("__cosh")));
#ifdef __NO_LONG_DOUBLE_MATH
__typeof(__coshl) __coshl __attribute__((alias("__cosh")));
__typeof(__coshl) coshl __attribute__((weak, alias("__cosh")));
#endif