-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmleosl.m
1062 lines (956 loc) · 44.3 KB
/
mleosl.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
function varargout=mleosl(Hx,thini,params,algo,bounds,aguess,ifinv,xver)
% [thhat,covFHh,lpars,scl,thini,params,Hk,k]=...
% MLEOSL(Hx,thini,params,algo,bounds,aguess,ifinv,xver)
%
% Maximum-likelihood estimation for univariate Gaussian
% multidimensional fields with isotropic Matern covariance
% See Olhede & Simons (2013), doi: 10.1093/gji/ggt056.x
% See Guillaumin et al. (2022), doi: 10.1111/rssb.12539
%
% INPUT:
%
% Hx Real-valued column vector of unwrapped spatial-domain quantities
% thini An unscaled starting guess for the parameter vector with elements:
% [ s2 nu rho], see SIMULOSL. If you leave this value
% blank, then you will work from the perturbed "aguess"
% params A parameter structure with constants assumed known, see SIMULOSL
% [dydx NyNx blurs kiso] in the units of
% m (2x), "nothing" (3x), rad/m, namely, in order:
% blurs 0 No wavenumber blurring
% 1 No wavenumber blurring, effectively
% N Fejer convolutional BLUROS on an N-times refined grid
% -1 Fejer multiplicative BLUROSY using exact procedure
% Inf Error -> Only for SIMULOSL to use SGP invariant embedding
% kiso wavenumber beyond which we are not considering the likelihood
% quart 1 quadruple, then QUARTER the spatial size
% 0 size as is, watch for periodic correlation behavior
% taper 0 there is no taper near of far, same as 1
% 1 it's a unit taper, implicitly, same as 0
% OR an appropriately sized taper with proper values
% (1 is yes and 0 is no and everything in between)
% algo 'unc' uses FMINUNC for unconstrained optimization [default]
% 'con' uses FMINCON with positivity constraints
% 'dsm' uses FMINSEARCH for downhill simplex method, derivative-free
% 'klose' simply closes out a run that got stuck [defaulted when needed]
% bounds A cell array with those positivity constraints [defaulted]
% aguess A parameter vector [s2 nu rho] that will be used in
% simulations for demo purposes, and on which "thini" will be
% based if that was left blank. If "aguess" is blank, there is
% a default. If "thini" is set, there is no need for "aguess"
% ifinv ordered inversion flags for [s2 nu rho], e.g., [1 0 1]:
% only minimizes the log-likelihood for the 1-flagged parameters, with
% the 0-flagged fixed to the value provided in thini, directly or as default;
% this has the effect of speeding up the estimation procedure but may
% not be appropriate in the case of real data with various unknowns
% xver 0 Minimal output, no extra verification steps
% 1 Conduct extra verification steps
%
% OUTPUT:
%
% thhat The maximum-likelihood estimate of the vector [scaled]:
% [s2 nu rho], in units of variance, "nothing", and distance, see SIMULOSL
% covFHh The covariance estimates:
% covFHh{1} from Fisher matrix AT the estimate [FISHIOSL] (eq. 139)
% covFHh{2} from analytical Hessian matrix AT the estimate [HESSIOSL] (eq. 133)
% covFHh{3} from numerical Hessian matrix NEAR the estimate [FMINUNC/FMINCON]
% covFHh{4} from the full formula (eq. 138), which is not implemented yet
% lpars The logarithmic likelihood and its derivatives AT or NEAR the estimate
% lpars{1} the numerical logarithmic likelihood [FMINUNC/FMINCON]
% lpars{2} the numerical scaled gradient, or score [FMINUNC/FMINCON]
% lpars{3} the numerical scaled second derivative, or Hessian [FMINUNC/FMINCON]
% lpars{4} the exit flag of the FMINUNC/FMINCON procedure [bad if 0]
% lpars{5} the output structure of the FMINUNC/FMINCON procedure
% lpars{6} the options used by the FMINUNC/FMINCON procedure
% lpars{7} any bounds used by the FMINUNC/FMINCON procedure
% lpars{8} the residual moment statistics used for model testing
% lpars{9} the predicted variance of lpars{8}(3) under the null hypothesis
% scl The scaling that applies to THHAT and THINI
% thini The starting guess used in the optimization procedure [scaled]
% params The known constants used inside, see above under INPUT
% Hk The spectral-domain version of the spatial-domain vector Hx
% k The wavenumbers on which the estimate is actually based
%
% NOTE:
%
% A program like EGGERS5 runs 'demo1' in an SPMD loop. Files are opened in
% append mode, except "thzro", which only reflects one lab in that case.
% Writing wires could get cross-checked, messing up the "diagn" files.
%
% EXAMPLE:
%
% p.quart=0; p.blurs=Inf; p.kiso=NaN; clc; [Hx,th,p]=simulosl([],p,1);
% p.blurs=-1; mleosl(Hx,[],p,[],[],[],[],1);
%
% You can stick in partial structures, e.g. only specifying params.kiso
%
% Fix any of the parameters to aguess by setting ordered value of ifinv to 0
% mleosl(Hx,[],p,[],[],[],[1 0 0],1)
%
% Invert for the squared exponential case for nu fixed to Inf
% Hx=simulosl([1e6 Inf 1e4],p,1);
% mleosl(Hx,[],p,[],[],[1e6 Inf 1e4],[1 0 1],1)
%
% Perform a series of N simulations centered on th0 with different p's
% mleosl('demo1',N,th,p)
%
% Statistical study of a series of simulations using MLEPLOS
% mleosl('demo2','14-Oct-2023')
%
% Covariance study of a series of simulations using COVPLOS
% mleosl('demo4','14-Oct-2023')
%
% One simulation and a chi-squared plot using MLECHIPLOS
% mleosl('demo5',th,p) % This should be as good as
% blurosy('demo2',p.NyNx,[],[],1) % for the same th
%
% Estimation of one realization for 3-parameter and 2-parameter optimization
% mleosl('demo6')
%
% Demo series for a fixed parameter
% mleosl('demo1',N,th,p,[],[],th,[1 0 1]);
% mleosl('demo2',date,[],[],[],[],[1 0 1]);
% mleosl('demo4',date,[],[],[],[],[1 0 1]);
%
% Tested on 8.3.0.532 (R2014a) and 9.0.0.341360 (R2016a)
%
% Last modified by fjsimons-at-alum.mit.edu, 12/16/2024
% Last modified by olwalbert-at-princeton.edu, 12/16/2024
if ~isstr(Hx)
defval('algo','unc')
% The necessary strings for formatting, see OSDISP and OSANSW
str0='%18s';
str1='%13.0e ';
str2='%13.0f %13.2f %13.0f';
str2='%13.3g %13.3g %13.5g';
str3s='%13s ';
% Supply the needed parameters, keep the givens, extract to variables
fields={ 'dydx','NyNx','blurs','kiso','quart','taper'};
defstruct('params',fields,...
{ [20 20]*1e3,sqrt(length(Hx))*[1 1],-1,NaN,0,0});
struct2var(params)
% You cannot call MLEOSL with params.blurs=Inf, since that's for
% SIMULOSL only, we reset for the inversion only inside LOGLIOSL
% These bounds are physically motivated...
if strcmp(algo,'con') || strcmp(algo,'dsm')
% Parameters for FMINCON in case that's what's being used, which is recommended
defval('bounds',{[],[],... % Linear inequalities
[],[],... % Linear equalities
[0.1 0.15 sqrt(prod(dydx))],... % Lower bounds
[100 8.00 max(2.5e5,min(dydx.*NyNx))],... % Upper bounds
[]}); % Nonlinear (in)equalities
else
bounds=[];
end
% Being extra careful or not?
defval('xver',1)
% Invert for [s2 nu rh]?
defval('ifinv',[1 1 1])
% The parameters used in the simulation for demos, or upon which to base "thini"
% Check Vanmarcke 1st edition for suggestions on initial rho, very important
% An alternative guessing approach
altguess=0;
if altguess
disp('in development: altguess=1; flag off when done')
% Approximate variance parameter (e.g., eq 32 of Methodology paper)
s2guess=nanvar(Hx);
% We can estimate the range parameter from the analytical definition of
% the spectral density (Eq. 72 of S&O 2013), the empirical periodogram at
% the origin, and our guess for s2
[k,~,~,kxv,kyv]=knums(params);%,1);
% For an idealized situation where we know th0 (e.g., used for testing)
% th0=[1e6 1.5 2e4];
% Sk=v2s(maternos(k(:),th0));
% prdgrm=Sk;
% For the empirical periodogram (consider the taper or not?)
% Hk2=v2s(abs(tospec(Tx(:).*Hx(:,1),params)/(2*pi)).^2,params);
Hk2=v2s(abs(tospec(Hx(:,1),params)/(2*pi)).^2,params);
prdgrm=Hk2;
% At the origin
S0=prdgrm(~k(:));
% Assuming a 2-dimensional field
rhoguess=2*sqrt(S0/(s2guess*pi));
% Selection of initial nu value inspired by Sykulski et al 2019 Biometrika
% (doi:10.1093/biomet/asy071) where initialization values for spectral
% parameters of a correlation structure are determined via ordinary least
% squares for 1-D data. I attempted to find slope of best-fit plane for a
% quadrant of the 2-D periodogram with OLS and SVD, but the results were
% poor. Instead, finding the slope of the radial average allows for an OK
% guess, with the exception of a dependency on rho that would not have
% have been a challenge in the Biometrika paper based on their analytical
% parameterization. For now, scaling nuguess by the scaling predicted for
% the range seems sufficient enough to get the inversion ticking, which is
% all we are after anyway.
rhscl=max(1,10.^round(log10(abs(rhoguess))));
% Assemble a vector of low wavenumbers where the slope of the radial
% average is near-constant; the current range was selected by eye from
% the commented out plotting routine below
prdgrm(k>max(abs(kxv)))=NaN;
[~,rav]=radavg(prdgrm);
[~,kav]=radavg(k);
K=length(kav);
rkmin=max(4,floor(K*0.05));
rkmax=2*rkmin;
ktrm=kav(rkmin:rkmax);
rtrm=rav(rkmin:rkmax);
% Least squares for slope parameter
G = [ones(prod(size(rtrm)),1) ktrm];
b=inv(G'*G)*G'*rtrm(:);
bscl=10.^(round(mean(log10(rtrm))));
nuguess=max(0.5,-1/2*real(b(2)/2/bscl/rhscl));
% LS with log of perturbed data; doesn't perform as well
% Glog = [ones(prod(size(rtrm)),1) log(ktrm)];
% blog=inv(Glog'*Glog)*Glog'*log(rtrm(:));
% nuguesslog=max(0.5,-1/2*real(blog(2)/2))
% Plot the periodogram and the traces we select to see how well our
% radial average and its linear fit approximate the periodogram
% figure();imagesc(prdgrm);
% figure();plot(kav,rav);hold on;plot(ktrm,rtrm)
% plot([kav(rkmin) kav(rkmin)],[1e-20 max(rtrm)],...
% [kav(rkmax) kav(rkmax)],[1e-20 max(rtrm)]);
% plot(ktrm,b(1)+b(2)*ktrm)
defval('aguess',[s2guess nuguess rhoguess]);
else
defval('aguess',[nanvar(Hx) 2.0 sqrt(prod(dydx.*NyNx))/pi/2/10]);
end
% Scale the parameters by this factor; fix it unless "thini" is supplied
defval('scl',10.^round(log10(abs(aguess))));
% Unless you supply an initial value, construct one from "aguess" by perturbation
nperturb=0.25;
% So not all the initialization points are the same!!
defval('thini',abs((1+nperturb*randn(size(aguess)).*ifinv).*aguess))
% If you brought in your own initial guess, you need an appropriate new scale
if ~isempty(inputname(2)) || any(aguess~=thini)
scl=10.^round(log10(abs(thini)));
disp(sprintf(sprintf('\n%s : %s ',str0,repmat(str1,size(scl))),...
'Scaling',scl))
end
disp(sprintf(sprintf('%s : %s',str0,str2),...
'Starting theta',thini))
if strcmp(algo,'con')
disp(sprintf(sprintf('\n%s : %s',str0,str2),...
'Lower bounds',bounds{5}))
disp(sprintf(sprintf('%s : %s',str0,str2),...
'Upper bounds',bounds{6}))
end
% Now apply the scale so the minimization doesn't get into trouble; for the
% special case of nu->Inf, we must enforce that scl(2)==1
if thini(end-1)==Inf; scl(2)=1; end
thini=thini./scl;
% Analysis taper
if length(taper)==1 && (taper==0 || taper==1)
Tx=1;
else
% Ones and zeros as suitable for BLUROSY
Tx=taper;
end
% Create the appropriate wavenumber axis
k=knums(params);
% We could get into the habit of never involving the zero-wavenumber
knz=(~~k);
% Always scale the data sets but don't forget to reapply at the very end
shat=nanstd(Hx(:,1));
% Scale the data; don't reorder the next three lines!
Hx(:,1)=Hx(:,1)./shat;
% Rescale the initial value so the output applies to both THHAT and THINI
thini(1)=thini(1).*scl(1)/shat^2;
% And with these new scalings you have no more business for the first scale
% though for the derived quantity you need to retain them
sclh=[shat^2 scl(2:3)];
matscl=[sclh(:)*sclh(:)'];
% Every next occurence has theta(1) compared to scaled Hk so that makes scl(1)=1
scl(1)=1;
matscl1=[scl(:)*scl(:)'];
% If we have the special case of nu->Inf, we will make a special matrix scale
if isinf(thini(end-1)) && ifinv(end-1)==0
matsclInf=[matscl(1:end-2,1:end-2) matscl(1:end-2,end);...
matscl( end, 1:end-2) matscl( end, end)];
end
% Always demean the data sets - think about deplaning as well?
Hx(:,1)=Hx(:,1)-nanmean(Hx(:,1));
% Turn the tapered observation vector to the spectral domain
% Watch the 2pi in SIMULOSL
Hk(:,1)=tospec(Tx(:).*Hx(:,1),params)/(2*pi);
% Account for the size here? Like in SIMULOSL and checked in BLUROSY
% See BLUROSY and how to normalize there, maybe take values of Tx?
if size(Tx)~=1
% This adjusts for the size of an explicit taper
Hk(:,1)=Hk(:,1)/sqrt(sum(Tx(:).^2))*sqrt(prod(params.NyNx));
end
NN=200;
% And now get going with the likelihood using Hk
% [ off|iter|iter-detailed|notify|notify-detailed|final|final-detailed ]
% Should probably make the tolerances relative to the number of k
% points? Or watch at least how these gradients size to the scaled lik
options=optimset('GradObj','off','Display','off',...
'TolFun',1e-11,'TolX',1e-11,'MaxIter',NN,...
'LargeScale','off');
% The 'LargeScale' option goes straight for the line search when the
% gradient is NOT being supplied.
% Set the parallel option to (never) use it for the actual optimization
% Doesn't seem to do much when we supply our own gradient
% options.UseParallel='always';
% The number of parameters that are being solved for
np=length(thini);
% The number of unique entries in an np*np symmetric matrix
npp=np*(np+1)/2;
if xver==1 && blurs>-1 && blurs<2
% Using the analytical gradient in the optimization is not generally a good
% idea but if the likelihoods aren't blurred, you can set this option to
% 'on' and then let MATLAB verify that the numerical calculations match
% the analytics. According to the manual, "solvers check the match at a
% point that is a small random perturbation of the initial point". My
% own "disp" output (further below) provides comparisons at the estimate
% even when the option below is set to "off" and we don't use it for any
% aspect of the optimization. If you should also try this for blurred
% systems (remove part of the condition above), you will fail the
% test and the whole thing will come to a halt. So after doing this
% interactively a few times, I've been setting the below to "off".
options.GradObj='off';
% Leave the below "on" since it's inconsequential when the above is "off"
options.DerivativeCheck='on';
end
% And find the MLE! Work on scaled parameters
try
switch algo
case 'unc'
% disp('Using FMINUNC for unconstrained optimization of LOGLIOSL')
if any(ifinv~=[1 1 1])
% We want to optimize for only the parameters requested, taking the
% value of thini for fixed parameters
% Put the non-inverted-for parameters up front
[~,tmpidx]=sort(ifinv);
% But remember how to put them back in order for later
[~,invidx]=sort(tmpidx);
t0=clock;
% It's the FMINUNC that benefits from the scaling, but LOGLIOSL is in units
[thhat,logli,eflag,oput,~,~]=...
fminunc(@(theta) logliosl(k,scl.*indeks([thini(~ifinv) theta],invidx),...
params,Hk,xver),...
thini(~~ifinv),options);
ts=etime(clock,t0);
% The estimate of theta that we report should include the optimized
% and fixed parameters
thhat=indeks([thini(~ifinv) thhat],invidx);
% Calculate the numerical gradient and Hessian given all three
% parameters
derivopts=optimset('MaxIter',0,'MaxFunEvals',0,'Display','off');
[~,~,~,~,grd,hes]=...
fminunc(@(theta) logliosl(k,scl.*theta,...
params,Hk,0),...
thhat,derivopts);
% In the special case of nu->Inf, we will retain a slice of grd and
% hes to avoid singularities when we later calculate the numerical
% covariance approximations
if isinf(thini(end-1)) && ifinv(end-1)==0
grdInf=[grd(1:end-2) grd(end)]';
hesInf=[hes(1:end-2,1:end-2) hes(1:end-2,end);...
hes( end, 1:end-2) hes( end, end)];
end
else
t0=clock;
[thhat,logli,eflag,oput,grd,hes]=...
fminunc(@(theta) logliosl(k,scl.*theta,...
params,Hk,xver),...
thini,options);
ts=etime(clock,t0);
end
case 'con'
% New for FMINCON
options.Algorithm='active-set';
% disp('Using FMINCON for constrained optimization of LOGLIOSL')
t0=clock;
% See M. K. Stein p. 173 when differentiability parameter maxes out
% Also check for when this crucial parameter hits the lower bound.
% Hitting the bounds for a parameter is relative, say within 10%.
thhat(2)=bounds{6}(2); nwh=4; nwi=0; hitit=thhat(2)/10;
while [bounds{6}(2)-thhat(2)<hitit ...
|| thhat(2)-bounds{5}(2)<hitit] ...
&& nwi<nwh
nwi=nwi+1;
thisthini=thini;
if nwi>1
disp(sprintf(...
'\nHit the wall on differentiability... trying again %i/%i\n',...
nwi,nwh))
end
if any(ifinv~=[1 1 1])
% Only optimize for the parameters requested
for bdx=1:length(bounds)
% For the lower and upper bounds of the parameter set
if ~isempty(bounds{bdx})
% Only scale the parameter bounds actually inverted for
subbounds{bdx}=bounds{bdx}(logical(ifinv))./scl(logical(ifinv));
else
% This remains empty
subbounds{bdx}=[];
end
end
% Put the non-inverted-for parameters up front
[~,tmpidx]=sort(ifinv);
% But remember how to put them back in order for later
[~,invidx]=sort(tmpidx);
[thhat,logli,eflag,oput,lmd,~,~]=...
fmincon(@(theta) logliosl(k,scl.*indeks([thini(~ifinv) theta],invidx),...
params,Hk,xver),...
thini(~~ifinv),...
subbounds{1},subbounds{2},subbounds{3},subbounds{4},...
subbounds{5},subbounds{6},subbounds{7},...
options);
% The estimate of theta should include all three parameters, whether
% we fixed or optimized for them
thhat=indeks([thini(~ifinv) thhat],invidx);
% Whatever the incoming bounds were, make the lower and upper bound of
% the non-inverted-for parameters equal to their fixed value
bounds{5}=indeks([thini(~ifinv)./scl(~ifinv) subbounds{5}],invidx);
bounds{6}=indeks([thini(~ifinv)./scl(~ifinv) subbounds{6}],invidx);
% Calculate the numerical gradient and Hessian from all three
% parameters; keep in mind that FMINCON estimates numerical
% Hessian at the next-to-last iteration from the Lagrangian
% rather than the objective function directly; may present
% inaccuracies
derivopts=optimset('MaxIter',0,'MaxFunEvals',0,'Display','off');
[~,~,~,~,~,grd,hes]=...
fmincon(@(theta) logliosl(k,scl.*theta,...
params,Hk,0),...
thhat,...
bounds{1},bounds{2},bounds{3},bounds{4},...
bounds{5},bounds{6},bounds{7},...
derivopts);
% In the special case of nu->Inf, we will retain a slice of grd and
% hes to avoid singularities when we later calculate the numerical
% covariance approximations
if isinf(thini(end-1)) && ifinv(end-1)==0
grdInf=[grd(1:end-2) grd(end)]';
hesInf=[hes(1:end-2,1:end-2) hes(1:end-2,end);...
hes( end, 1:end-2) hes( end, end)];
end
else
[thhat,logli,eflag,oput,lmd,grd,hes]=...
fmincon(@(theta) logliosl(k,scl.*theta,...
params,Hk,xver),...
thini,...
bounds{1},bounds{2},bounds{3},bounds{4},...
bounds{5}./scl,bounds{6}./scl,bounds{7},...
options);
% Try resetting the offending parameter nu by a serious kick
thini(end-1)=thini(end-1)/[1+1/4-rand/2];
end
% And the others, switching the relationship between sigma^2 and rho
thini(1)=thini(1)*rand;
thini(3)=thini(3)/rand;
end
% You've left the loop, so you've used the last thini
thini=thisthini;
if nwi==nwh
% You haven't been able to do it within the bounds for nu, relax
% the bounds or flag the result, or trim it at the end... error!
warning('Solution hugs the bound for NU, perhaps uncomfortably')
end
ts=etime(clock,t0);
case 'dsm'
% FMINSEARCH minimizes LOGLIOSL objective function according to the
% Nelder-Mead simplex algorithm by first generating a simplex with n+1
% vertices about the n-dimensional thini, and then iteratively
% modifying the simplex through reflection, expansion, and contraction
% of function value-ordered vertices; must satisfy both the function
% tolerance and step tolerance stopping criteria to exit. This is a
% gradient-free solver so convergence to local minimum not guaranteed.
% FMINSEARCH was used by the Biometrika 2019 publication
% doi:10.1093/biomet/asy071
if any(ifinv~=[1 1 1])
% We want to optimize for only the parameters requested, taking the
% value of thini for fixed parameters
% Put the non-inverted-for parameters up front
[~,tmpidx]=sort(ifinv);
% But remember how to put them back in order for later
[~,invidx]=sort(tmpidx);
t0=clock;
options=[];
[thhat,logli,eflag,oput]=...
fminsearch(@(theta) logliosl(k,scl.*indeks([thini(~ifinv) theta],invidx),...
params,Hk,xver),...
thini(~~ifinv),options);
ts=etime(clock,t0);
% The estimate of theta should include all three parameters, whether
% we fixed or optimized for them
thhat=indeks([thini(~ifinv) thhat],invidx);
else
t0=clock;
options=[];
[thhat,logli,eflag,oput]=...
fminsearch(@(theta) logliosl(k,scl.*theta,...
params,Hk,xver),...
thini,options);
ts=etime(clock,t0);
end
% While FMINSEARCH is gradient-free, we might still want to know
% what these values are at the estimate. Let's find the numerical
% gradient and Hessian at the parameter estimate following our
% approach for doing so in the fixed parameter case for FMINUNC
derivopts=optimset('MaxIter',0,'MaxFunEvals',0,'Display','off');
[~,~,~,~,grd,hes]=...
fminunc(@(theta) logliosl(k,scl.*theta,...
params,Hk,0),...
thhat,derivopts);
% In the special case of nu->Inf, we will retain a slice of grd and
% hes to avoid singularities when we later calculate the numerical
% covariance approximations
if isinf(thini(end-1)) && ifinv(end-1)==0
grdInf=[grd(1:end-2) grd(end)]';
hesInf=[hes(1:end-2,1:end-2) hes(1:end-2,end);...
hes( end, 1:end-2) hes( end, end)];
end
case 'klose'
% Simply a "closing" run to return the options
lpars{6}=options;
lpars{7}=bounds;
% Simply a "closing" run to return the options
varargout=cellnan(nargout,1,1);
varargout{end}=lpars;
return
end
catch
% If something went wrong, exit gracefully
if ~exist('thhat') || isnan(thhat); thhat=deal(nan(1,3)); end
varns={thhat,[],[],sclh,thini,params,Hk,k};
varargout=varns(1:nargout);
return
end
% It is not impossible that a solution is reached which yields a
% negative rho - which only appears in the square in MATERNOS. But if
% we're going to calculate (approximately blurred) analytical
% gradients and Hessians (even using exact blurring of the spectral
% densities), we are going to be using MATERNOSY, which will complain...
if thhat(1)<0
error(sprintf('%s Negative variance',upper(mfilename)))
end
if thhat(2)<0
error(sprintf('%s Negative smoothness',upper(mfilename)))
end
if thhat(3)<0
error(sprintf('%s Negative range',upper(mfilename)))
end
% Degrees of freedom for full-wavenumber domain (redundant for real data)
% Not including the zero wavenumber, since LOGLIOS doesn't either
df=length(k(~~k))/2;
% Watch out for singularity or scaling warnings, they are prone to pop up
% Covariance from FMINUNC/FMINCON's numerical scaled Hessian AT/NEAR estimate,
% taking special care for the special case of nu->Inf
if isinf(thini(end-1)) && ifinv(end-1)==0
covh=inv(hesInf./matsclInf)/df;
else
covh=inv(hes./matscl)/df;
end
if xver==1 & verLessThan('matlab','8.4.0')
% Try variable-precision arithmetic?
vh=sym('vh',[np np]);
for index=1:prod(size(vh))
vh(index)=sprintf('%0.16e/%0.1e ',hes(index),matscl(index));
end
% Could try even more digits with VPA but in the end it didn't all seem
% to matter much
vcovh=inv(vh)/df;
end
% Fisher matrix AT the estimate, and covariance derived from it
[F,covF]=fishiosl(k,sclh.*thhat,xver);
if isinf(thini(end-1)) && ifinv(end-1)==0
FInf=[F(1:end-2,1:end-2) F(1:end-2,end);
F( end ,1:end-2) F( end, end)];
covF=inv(FInf)/df;
end
% Analytic (poorly blurred) Hessian AT the estimate, and derived covariance
[H,covH]=hessiosl(k,scl.*thhat,params,Hk,xver);
scls=[shat^2 1 1];
matscls=[scls(:)*scls(:)'];
covH=inv(-H./matscls)/df;
% For the special case of nu->Inf, we will neglect terms involving nu
if isinf(thini(end-1)) && ifinv(end-1)==0
HInf=[H(1:end-2,1:end-2) H(1:end-2,end);
H( end ,1:end-2) H( end, end)];
covH=inv(-HInf)/df;
end
% FJS how about a step further, use F-1 H F-T to get any influence at all
% Does Arthur use the average variance of the gradient here somewhere
if isinf(thini(end-1)) && ifinv(end-1)==0
covFHF=inv(FInf)*[-HInf]*inv(FInf)/df;
covFhF=inv(FInf)*[hesInf./matsclInf]*inv(FInf)/df;
else
covFHF=inv(F)*[-H./matscls]*inv(F)/df;
covFhF=inv(F)*[hes./matscl]*inv(F)/df;
end
% Analytical calculations of the gradient and the Hessian poorly represent
% the blurring (though it's much better than not trying at all), and thus,
% are expected to be close to numerical results only without blurring
if xver==1
% Analytic (poorly blurred) gradient, scaled for numerical comparison
gros=gammiosl(k,scl.*thhat,params,Hk,xver).*scl(:);
% Compare the analytic Hessian with the numerical Hessian and with
% the Hessian expectation, which is the Fisher, at the estimate, and
% compare the analytic gradient with the numerical gradient
str3=repmat('%13g ',1,npp);
str4=repmat('%13g ',1,np);
disp(sprintf('%s',repmat('_',119,1)))
disp(sprintf('\n%16s\n','At the ESTIMATE:'));
disp(sprintf(sprintf(' Log-likelihood : %s',str3),logli))
disp(sprintf(...
['\nThe numerical derivatives are usually at the penultimate iteration:']))
if params.blurs~=0
disp(sprintf(...
['\nWith blurring, the comparisons below are necessarily inexact:']))
end
disp(sprintf(sprintf('\n%s %s ',str0,repmat(str3s,1,np)),...
' ','ds2','dnu','drho'))
disp(sprintf(sprintf(' Numericl Gradient : %s',str4),grd))
disp(sprintf(sprintf(' Analytic Gradient : %s',str4),gros))
disp(sprintf(sprintf('\n%s %s ',str0,repmat(str3s,1,npp)),...
' ','(ds2)^2','(dnu)^2','(drho)^2','ds2dnu','ds2drho','dnudrho'))
disp(sprintf(sprintf(' Numerical Hessian : %s',str3),trilos(hes)))
disp(sprintf(sprintf(' Analyticl Hessian : %s',str3),trilos(-H.*matscl1)))
disp(sprintf(sprintf(' Analytical Fisher : %s',str3),trilos( F.*matscl)))
disp(sprintf(sprintf('\n%s %s ',str0,repmat(str3s,1,npp)),...
' ','C(s2,s2)','C(nu,nu)','C(rho,rho)','C(s2,nu)','C(s2,rho)','C(nu,rho)'))
disp(sprintf(sprintf(' Cov (Numer Hess.) : %s',str3),trilos(covh)))
disp(sprintf(sprintf(' Cov (Analy Hess.) : %s',str3),trilos(covH)))
disp(sprintf(sprintf(' Cov (Analy Fish.) : %s',str3),trilos(covF)))
disp(sprintf(sprintf(' Cov ( FishHFish.) : %s',str3),trilos(covFHF)))
disp(sprintf(sprintf(' Cov ( FishhFish.) : %s',str3),trilos(covFhF)))
disp(sprintf('%s',repmat('_',119,1)))
disp(sprintf(sprintf('%s : %s ',str0,str2),...
'Numer Hessi std',sqrt(diag(covh))))
disp(sprintf(sprintf('%s : %s ',str0,str2),...
'Analy Hessi std',sqrt(diag(covH))))
disp(sprintf(sprintf('%s : %s\n ',str0,str2),...
'Anal Fisher std',sqrt(diag(covF))))
disp(sprintf(sprintf('%s : %s ',str0,str2),...
' FishHFish. std',sqrt(diag(covFHF))))
disp(sprintf(sprintf('%s : %s\n ',str0,str2),...
' FishhFish. std',sqrt(diag(covFhF))))
end
% Talk!
disp(sprintf(sprintf('\n%s %s ',str0,repmat(str3s,1,np)),...
' ','s2','nu','rho'))
disp(sprintf(sprintf('%s : %s ',str0,str2),...
'Estimated theta',sclh.*thhat))
disp(' ')
if xver==0 || xver==1
disp(sprintf('%8.1fs per %i iterations or %5.1fs per %i function counts',...
ts/oput.iterations*100,100,ts/oput.funcCount*1000,1000))
disp(sprintf('%s\n',repmat('_',119,1)))
end
% Here we compute the moment parameters and recheck the likelihood
[L,~,Hagain,momx,vr]=logliosl(k,scl.*thhat,...
params,Hk,xver);
diferm(L,logli)
try
diferm(Hagain,H)
end
% Reorganize the output into cell arrays
covFHh{1}=covF;
covFHh{2}=covH;
covFHh{3}=covh;
% Likelihood attributes
lpars{1}=logli;
lpars{2}=grd;
lpars{3}=hes;
lpars{4}=eflag;
lpars{5}=oput;
lpars{6}=options;
lpars{7}=bounds;
lpars{8}=momx;
lpars{9}=vr;
% Generate output as needed
varns={thhat,covFHh,lpars,sclh,thini,params,Hk,k};
varargout=varns(1:nargout);
elseif strcmp(Hx,'demo1')
more off
% Runs a series of simulations. See 'demo2' to display them.
% If you run this again on the same date, the files THINI and
% THHAT get appended, but a blank THZERO is created.
defval('thini',[]);
% How many simulations? The SECOND argument, after the demo id.
N=thini; clear thini
% What th-parameter set? The THIRD argument, after the demo id
defval('params',[])
% If there is no preference, then that's OK, it gets taken care of
th0=params; clear params
% What fixed-parameter set? The FOURTH argument, after the demo id
defval('algo',[])
% If there is no preference, then that's OK, it gets taken care of
params=algo; clear algo
% What algorithm? The FIFTH argument, after the demo id
defval('bounds',[])
% If there is no preference, then that's OK, it gets taken care of
algo=bounds; clear bounds
% What datum? The SIXTH argument, after the demo id
defval('aguess',[])
% If there is no preference, then that's OK, it gets taken care of
datum=aguess; clear aguess
% Where to initialize (approx.)? The SEVENTH argument, after the demo id
defval('ifinv',[])
% If there is no preference, then that's OK, it gets taken care of
aguess=ifinv; clear ifinv
% Which parameters to invert for? The EIGHTH argument, after the demo id
defval('xver',[1 1 1])
% If there is no preference, then that's OK, it gets taken care of
ifinv=xver; clear xver
% You can't stick in a NINTH argument so you'll have to default
defval('xver',0)
% What you make of all of that if there hasn't been a number specified
defval('N',500)
% The number of parameters to solve for
np=3;
% Open 'thzro', 'thini', 'thhat' and 'diagn' files and return format strings
[fids,fmts,fmti]=osopen(np,datum);
% Do it!
good=0;
% Initialize the average Hessian that will be saved by OSWZEROE
avhsz=zeros(np,np);
% Set N to zero to simply close THZERO out
for index=1:N
% Simulate data from the same lithosphere, watch the blurring
[Hx,th0,p,k,Hk]=simulosl(th0,params,xver);
% Check the dimensions of space and spectrum are right
difer(length(Hx)-length(k(:)),[],[],NaN)
% If we are working within either the squared exponential case or a fixed nu
% case, we will use the provided 'aguess' within our batch calculuations;
% otherwise, we will take the provided 'th0' as 'aguess'.
if isinf(th0(2)); th1=aguess; elseif ifinv==[1 0 1]; th1=aguess; else; th1=th0; end
% Form the maximum-likelihood estimate, pass on the params, use th0
% as the basis for the perturbed initial values. Remember hes is scaled.
t0=clock;
[thhat,covFHh,lpars,scl,thini,p,Hk,k]=mleosl(Hx,[],p,algo,[],th1,ifinv,xver);
ts=etime(clock,t0);
% Initialize the THZRO file... note that the bounds may change
% between simulations, and only one gets recorded here
if ~any(isnan(thhat)) && index==1 && labindex==1
oswzerob(fids(1),th0,p,lpars,fmts)
end
% If a model was found, keep the results, if not, they're all NaNs
% Ignore the fact that it may be at the maximum number of iterations
% e=1
% IF NUMBER OF FUNCTION ITERATIONS IS TOO LOW DEFINITELY BAD
itmin=0;
% A measure of first-order optimality (which in the unconstrained case is
% the infinity norm of the gradient at the solution). Maybe what it
% means to be 'good' should be in function of the data size as more
% precision will be needed to navigate things with smaller variance! At
% any rate, you want this not too low.
optmin=Inf;
% Maybe just print it and decide later? No longer e>0 as a condition.
% e in many times is 0 even though the solution was clearly found, in
% other words, this condition IS a way of stopping with the solution
try
% Maybe I'm too restrictive in throwing these out? Maybe the
% Hessian can be slightly imaginary and I could still find thhat
if isreal([lpars{1} lpars{2}']) ...
&& all(thhat>0) ...
&& all(~isnan(thhat)) ...
&& lpars{5}.iterations > itmin ...
&& lpars{5}.firstorderopt < optmin
good=good+1;
% Build the AVERAGE of the Hessians for printout by OSWZEROE later
avhsz=avhsz+lpars{3}./[scl(:)*scl(:)'];
% Reapply the scalings before writing it out
fprintf(fids(2),fmts{1},thhat.*scl);
fprintf(fids(3),fmts{1},thini.*scl);
% We don't compare the second and third outputs of LOGLIOSL since these are
% analytical, poorly approximately blurred, derivatives, and we be
% writing the numerical versions. Be aware that covFHh{3} is the
% current favorite covariance estimate on the parameters!
% Print optimization results and diagnostics to different file with OSWDIAG
oswdiag(fids(4),fmts,lpars,thhat,thini,scl,ts,var(Hx),covFHh{3})
end
end
end
% If there was any success at all, finalize the THZRO file
% If for some reason this didn't end well, do an N==0 run.
% Initialize if all you want is to close the file
if N==0
[Hx,th0,p,k]=simulosl(th0,params);
good=1; avhsz=avhsz+1;
[~,~,lpars]=mleosl(Hx,[],[],'klose');
oswzerob(fids(1),th0,p,lpars,fmts)
end
if good>=1
% This is the new scaling based on the truth which we use here
sclth0=10.^round(log10(th0));
% This is the AVERAGE of the numerical Hessians, should be closer to the Fisher
avhsz=avhsz.*[sclth0(:)*sclth0(:)']/good;
% If you are working within the squared exponential case, or if you ended on
% a nonsensical estimate, we will have to intervene and forgo the
% calculation of the Fisher-derived covariance at the truth
if ~any(isnan(k(:))) && ~isinf(th0(2))
% Now compute the Fisher and Fisher-derived covariance at the truth
[F0,covF0]=fishiosl(k,th0);
matscl=[sclth0(:)*sclth0(:)'];
else
[F0,covF0,matscl,avhsz]=deal(nan(3,3));
end
% Of course when we don't have the truth we'll build the covariance
% from the single estimate that we have just obtained. This
% covariance would then be the only thing we'd have to save.
if labindex==1
oswzeroe(fids(1),sclth0,avhsz,good,F0.*matscl,covF0,fmti)
end
end
% Put both of these also into the thzro file
fclose('all');
elseif strcmp(Hx,'demo2')
defval('thini',[]);
datum=thini;
defval('datum',date)
% The number of parameters to solve for
np=3;
% Looks like more trimming is needed for 'con' rather than 'unc'
trims=100;
% Load everything you know about this simulation
[th0,thhats,p,covX,covavhs,thpix,~,~,~,~,momx,covXpix,covF0]=osload(datum,trims);
defval('xver',0)
if xver==1
% Report the findings of all of the moment parameters
disp(sprintf('\nm(m(Xk)) %f m(v(Xk)) %f\nm(magic) %f v(magic) %f',...
mean(momx),var(momx(:,end))))
end
% Plot it all
figure(1)
fig2print(gcf,'landscape')
clf
% We feed it various things and it calculates a bunch more
[ah,ha]=mleplos(thhats,th0,covF0,covavhs,covXpix,[],[],p,...
sprintf('MLEOSL-%s',datum),thpix,ifinv);
% Return some output, how about just the empirically observed
% means and covariance matrix of the estimates, and the number of
% reported trials
nobs=size(thhats,1);
mobs=mean(thhats,1);
cobs=cov(thhats);
varns={cobs,mobs,nobs,th0,p,momx};
varargout=varns(1:nargout);
% Print the figure!
disp(' ')
figna=figdisp([],sprintf('%s_%s',Hx,datum),[],2);
% Being extra careful or not?
defval('xver',0)
if xver==1
% Take a look a the distribution of the residual moments
% This now is a full part of MLECHIPLOS and demo5
% See RB X, p. 51 about the skewness of a chi-squared - just sayin'.
% We don't change the number of degrees of freedom! If you have used
% twice the number, and given half correlated variables, you do not
% change the variance, that is the whole point. Unlike in FISHIOSL
% where you make an analytical prediction that does depend on the
% number and which therefore you need to adjust.
k=knums(p); varpred=8/[length(k(~~k))];
figure(2)
clf
fig2print(gcf','portrait')
ahh(1)=subplot(121);
histfit(momx(:,3));
[m,s]=normfit(momx(:,3));
disp(sprintf('mean %f predicted mean 1 \nstdv %s predicted stdv %s',m,s,sqrt(varpred)))
shrink(ahh(1),1,1.5)
xl(1)=xlabel('histogram of the residual moments');
ahh(2)=subplot(122);
qqplot((momx(:,3)-1)/sqrt(varpred)); axis image; grid on; box on
refline(1,0)
movev(ahh,-0.1)
t=ostitle(ahh,p,sprintf('MLEOSL-%s',datum)); movev(t,1)
% Could also do, as these quantities should be very close of course
% qqplot(momx(:,2),momx(:,3)); axis image; refline(1,0); grid on
% Then use NORMTEST to ascertain the veracity... don't bother with the
% Nyquist wavenumbers, there will be very few, but take out the zero
% Predicted expected value is one.
[a,b,c,d]=normtest(momx(:,3),1,varpred);
end
elseif strcmp(Hx,'demo3')
disp('This does not exist, numbering kept for consistency only')
elseif strcmp(Hx,'demo4')
defval('thini',[]);
datum=thini;
defval('datum',date)
defval('ifinv',[1 1 1])
% The number of parameters to solve for
np=3;
% Load everything you know about this simulation
% Looks like more trimming is needed for 'con' rather than 'unc'
trims=100;
[th0,thhats,params,covX,~,pix,~,~,obscov,sclcovX,~,covXpix]=osload(datum,trims);
% Make the plot
ah=covplos(2,sclcovX,obscov,params,thhats,[],[],'ver',ifinv);
% Print the figure!
disp(' ')
figna=figdisp([],sprintf('%s_%s',Hx,datum),[],2);
elseif strcmp(Hx,'demo5')
% What th-parameter set? The SECOND argument after the demo id
defval('thini',[]);
% If there is no preference, then that's OK, it gets taken care of
th0=thini; clear thini
% What fixed-parameter set? The THIRD argument after the demo id
defval('params',[]);
% Figure name
figna=sprintf('%s_%s_%s',mfilename,Hx,date);
% Simulate data, watch the blurring, verify CHOLCHECK inside
[Hx,th0,p,k,Hk]=simulosl(th0,params,1);
% Initialize, take defaulted inside MLEOSL for now
thini=[];
% Perform the optimization, whatever the quality of the result
[thhat,covFHh,lpars,scl,thini,p,Hks,k]=mleosl(Hx,thini,p);
matscl=[scl(:)*scl(:)'];
if any(isnan(k(:))); return; end
% Fisher and Fisher-derived covariance at the truth
[F0,covF0]=fishiosl(k,th0);
% Fisher and Fisher-derived covariance at the estimate
% covF=covFHh{1};
% Those two are close of course, and of not much intrinsic interest anymore