-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmuckit.m
314 lines (275 loc) · 11.7 KB
/
muckit.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
function varargout=muckit(v,p,scl,opt)
% [v,I,w,scl,cr]=MUCKIT(v,p,scl,opt)
%
% Makes randomly mucked up speckled indicatrix tapers.
%
% INPUT:
%
% v A vector that is the unwrapping of a matrix
% p A single parameter structure with AT LEAST this:
% NyNx number of samples in the y and x directions
% mask an index matrix with 1 for yes and 0 for no, OR
% a muck type name, e.g. 'random' [default]
% scl A scale [0 to 1] expressing the non-missing data fraction
% opt A field structure for optimization flags:
% algo the optimization algorithm
% ifinv ordered inversion flags for [s2 nu rho], e.g. [1 0 1]
%
% OUTPUT:
%
% v The first input with the samples in I retained, rest set to NaN
% I The mask, unrolled into a vector, note, this is an "anti-mask"
% w The antimucked-up output matrix, unrolled into a vector
% scl A scale [0 to 1] expressing the non-missing data fraction
% cr The colum,row index coordinates of the bounding curve
%
% EXAMPLE:
%
% [~,I]=muckit('demo1','random',0.8); % To get a quick muck to look at
% muckit('demo1') % A uniformly random masking a single field
% muckit('demo1',[],rand) % for a different percentage of survivors
% muckit('demo2'); % To do a serious of mock muck inversions
% maskit('demo3',[],rand) % Illustrating the nomenclature
%
% Last modified by owalbert-princeton.edu, 06/11/2024
% Last modified by fjsimons-at-alum.mit.edu, 06/11/2024
% The default is the demo, for once
defval('v','demo1')
defstruct('opt',{'algo','ifinv'},{'unc',[1 1 1]});
if ~isstr(v)
% Get the muck by name? Let's play "mikado"?
if isstr(p.mask)
% Scale indicates survivorship (in symmetry with MASKIT)
% Default scale so bounding-box-area-proportionality is scl
defval('scl',0.9)
if strcmp(p.mask,'random')
I=zeros(p.NyNx);
% Now knock out the missing data
% This produces way too much overlap
% round(scale(rand(round(scl*prod(p.NyNx)),1),[1 prod(p.NyNx)]))
% This is exact
S=shuffle(1:prod(p.NyNx));
I(S(1:round(scl*prod(p.NyNx))))=1;
% Produce the bounding curve (later)
cr=NaN;
end
else
% You already have it
cr=NaN;
I=p.mask;
end
w=v;
% Apply the muck to the field
v(~I(:))=NaN;
% Apply the antimuck to the field
w(~~I(:))=NaN;
% Note that you must not feed fields with NaN into MLEOSL - the taper I will
% take of the selectivity
elseif strcmp(v,'demo1')
% Capture the second input
defval('p','random')
defp=p; clear p
% Now proceed with a fresh copy
p.mask=defp;
p.quart=0; p.blurs=Inf; p.kiso=NaN; clc;
[Hx,th,p]=simulosl([],p,1);
% Capture the third input, default is none, which defaults inside
defval('scl',[])
[Hm,I,~,scl,cr]=muckit(Hx,p,scl);
clf
ah(1)=subplot(121); plotit(Hx,p,cr,th)
ah(2)=subplot(122); plotit(Hm,p,cr,[])
t=title(sprintf('%i %% surviving',round(100*scl)));
movev(t,-p.NyNx(1)/20)
% Create right type of output even though there is non
v=Hm; w=NaN;
elseif strcmp(v,'demo2')
% Capture the second input
defval('p','random')
defp=p; clear p
% Capture the fourth input
defstruct('opt',{'algo','ifinv'},{[],[]});
% Change the below if you like
opt.ifinv=[1 1 1];
% Now proceed with a fresh copy
p.mask=defp;
% Simulate using circulant embedding, no taper
p.quart=0; p.blurs=Inf; p.kiso=NaN; clc;
% Something manageable without overdoing it
p.NyNx=[188 233]+randi(20,[1 2]);
% Something larger without overdoing it, check weirdness
% If you want to generate the same hash you need to keep the same dimensions
p.NyNx=[196 238];
% Do all the tests or not
xver=0;
% Decide on the length of the pause between displays, if any,
if xver==1
pz=2;
else
pz=0.1;
end
% Define the parameters for the field
th=[1.50 0.5 30000];
% Needing to be very explicit in order for parallel computing to work with in the loop
p.dydx=[10000 10000];
p.taper=0; p.nugget=0;
% Number of processors, must agree with your machine
NumWorkers=8;
% Number of identical experiments to run experiments
N=1*NumWorkers;
% Save some output for later? Make new filename hash from all relevant input
fname=hash([struct2array(orderfields(p)) struct2array(orderfields(opt)) th N],'SHA-1');
% You need to have an environmental variable file structure set up
fnams=fullfile(getenv('IFILES'),'HASHES',sprintf('%s_%s.mat','MUCKIT',fname));
% Run the experiment anew
if ~exist(fnams,'file') % || 1==1
% Initialize the pool of workers
if isempty(gcp('nocreate')); pnw=parpool(NumWorkers); end
% Run the experiment!
parfor index=1:N
clc; disp(sprintf('\n Simulating the field \n'))
% Simulate the field
Hx=simulosl(th,p,1);
% How much should the surviving area occupy?
% Don't SET this here or PARFOR won't work
scl=[];
% Now do the masking and the merging
[Hm,I,Ham,scl,cr]=muckit(Hx,p,scl);
% So Ham is the anti-mucked-up field
v=Hm; w=Ham;
% As appropriate you'll force the use of BLUROSY in MATERNOSP in LOGLIOSL in MLEOSL
% This is confusing PARFOR but works with FOR
% p.blurs=-1;
% Make a close initial guess?
thini(index,:)=th+(-1).^randi(2,[1 3]).*th/1000;
% Don't perturb the thini for the one you don't want to move; could
% have also have stuck in th into the aguess slot of
% MLEOSL, whence they would be appropriately (or not) perturbed
if opt.ifinv==[1 0 1]
% This didn't work
%thini(index,2)=th(2);
% But this did
thini(index,:)=th+(-1).^randi(2,[1 3]).*[th(1) 0 th(3)]/1000;
end
% Recover the parameters of the full original field without any mucking
% The relabeling is to make PARFOR work, with FOR they could all just be p
p1=p; p1.taper=0; p1=rmfield(p1,'mask');
pause(pz); clc; disp(sprintf('\n Estimating first whole field \n'))
[thhat3(index,:),~,~,scl3(index,:)]=mleosl(Hx,thini(index,:),p1,opt.algo,[],[],opt.ifinv,xver);
if xver==1
% Explicitly check the likelihood?
disp(sprintf('\n Likelihood at the initial guess %g\n',...
logliosl(knums(p1),thini(index,:)./scl3(index,:),scl3(index,:),p1,...
tospec(Hx(:),p1)/(2*pi))));
disp(sprintf('\n Likelihood at the truth %g\n',...
logliosl(knums(p1),th./scl3(index,:),scl3(index,:),p1,...
tospec(Hx(:),p1)/(2*pi))));
% --> inside protect by looking at momx?? That's where it goes wrong
end
% Now recover the parameters of the speckled field
% The relabeling is to make PARFOR work, with FOR they could all just be p
p2=p; p2.taper=I; p2.mask='random';
pause(pz); clc; disp(sprintf('\n Estimating first speckled field \n'))
[thhat1(index,:),~,~,scl1(index,:)]=mleosl(Hx,thini(index,:),p2,opt.algo,[],[],opt.ifinv,xver);
if xver==1
% Explicitly check the likelihood?
disp(sprintf('\n Likelihood at the initial guess %g\n',...
logliosl(knums(p2),thini(index,:)./scl1(index,:),scl1(index,:),p2,...
tospec(p2.taper(:).*Hx(:),p2)/(2*pi)/sqrt(sum(p2.taper(:).^2))*sqrt(prod(p2.NyNx)),1)));
disp(sprintf('\n Likelihood at the truth %g\n',...
logliosl(knums(p2),th./scl1(index,:),scl1(index,:),p2,...
tospec(p2.taper(:).*Hx(:),p2)/(2*pi)/sqrt(sum(p2.taper(:).^2))*sqrt(prod(p2.NyNx)),1)));
end
% Now recover the parameters of the complement to the speckled field
% The relabeling is to make PARFOR work, with FOR they could all just be p
p3=p; p3.taper=~I; p3.mask='random';
pause(pz); clc; disp(sprintf('\n Estimating anti-speckled field \n'))
[thhat2(index,:),~,~,scl2(index,:)]=mleosl(Hx,thini(index,:),p3,opt.algo,[],[],opt.ifinv,xver);
% Pause so you can watch live (big pause if xver==0)
pause(pz)
% This is unnecessary for PARFOR but works with FOR
% Reset to the original values
%p.blurs=Inf; p.taper=0;
end
% Save all the output that you'll need later, may add more later
save(fnams,'th', 'p','thhat1','thhat2','scl1','scl2',...
'thhat3','scl3', 'thini' ,'N')
else
% Load all the saved output
load(fnams)
end
% And now look at the statistics of the recovery
str0='%8.2f %5.2f %6.0f';
str1=sprintf('%s %s\n',str0,str0);
str2=sprintf('%s\n',str0);
disp(sprintf('\nWhole | Speckled\n'))
disp(sprintf(str1,[thhat3.*scl3 thhat1.*scl1]'))
disp(sprintf('\nWhole | Anti-Speckled\n'))
disp(sprintf(str2,[thhat3.*scl3 thhat2.*scl2]'))
% Save the figures bjootifooly
% Remake one sampled field just to make the visual
Hx=simulosl(th,p,1);
[Hm,cr,I,scl]=muckit(Hx,p,[]);
% Make a visual for good measure
figure(3)
clf
ah(1)=subplot(121); plotit(Hx,p,[],th)
xlabel('Original field')
ah(2)=subplot(122); plotit(Hm,p,[],th);
t=title(sprintf('%i %% surviving',round(100*scl)));
movev(t,-p.NyNx(1)/20)
% Then plot these things using MLEPLOS
% So this is the region of speckles
figure(1)
mleplos(thhat1.*scl1,th,[],[],[],[],[],p,sprintf('%i %% speckle',round(100*scl)),[],opt.ifinv)
figure(1)
figdisp(sprintf('%s_2a',pref(sprintf('%s_%s.mat','MUCKIT',fname))),[],[],2)
clf
figure(2)
figdisp(sprintf('%s_2b',pref(sprintf('%s_%s.mat','MUCKIT',fname))),[],[],2)
clf
% And this is the antispeckled region
figure(1)
mleplos(thhat2.*scl2,th,[],[],[],[],[],p,sprintf('%i %% antispeckle',round(100*(1-scl))),[],opt.ifinv)
pause(1)
figure(1)
figdisp(sprintf('%s_3a',pref(sprintf('%s_%s.mat','MUCKIT',fname))),[],[],2)
clf
figure(2)
figdisp(sprintf('%s_3b',pref(sprintf('%s_%s.mat','MUCKIT',fname))),[],[],2)
% With PARFOR none of the once-used are available out of the loop but in
% this demo2 you don't want any output anyway, so put in empties
[v,I,w,scl,cr]=deal(NaN);
elseif strcmp(v,'demo3')
th1=[1.15 1.15 23000];
p.mask='random';
% Something manageable without overdoing it
p.NyNx=[188 233]+randi(20,[1 2]);
% Capture the third input, default is none, which defaults inside
defval('scl',[])
% Remake one sampled field just to make the visual
[Hx,~,p,~,~,Sb1]=simulosl(th1,p);
[v,I,w,scl,cr]=muckit(Hx,p,scl);
% Make a visual for good measure
clf
ah(1)=subplot(221); plotit(v,p,cr,sprintf('%i %% speckle',round(100*scl)))
ah(3)=subplot(223); plotit(w,p,cr,sprintf('%i %% antispeckle',round(100*(1-scl))))
ah(4)=subplot(224); plotit(Hx,p,cr,'original')
movev(ah(4),0.25)
end
% Variable output
varns={v,I,w,scl,cr};
varargout=varns(1:nargout);
function plotit(v,p,cr,th)
% Should use th(1) instead of halverange, shouldn't I...
imagefnan([1 1],p.NyNx([2 1]),v2s(v,p),[],halverange(v,80,NaN)); axis ij image
xticks([1 round(p.NyNx(2)/2) p.NyNx(2)]); yticks([1 round(p.NyNx(1)/2) p.NyNx(1)])
if ~isempty(th)
if isstr(th)
t=title(th);
else
t=title(sprintf('%i x %i | %s = [%g %g %gx]',p.NyNx(1),p.NyNx(2),'\theta',...
th./[1 1 sqrt(prod(p.dydx))]));
end
movev(t,-p.NyNx(1)/20)
end