-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathgps2median.m
183 lines (162 loc) · 6.9 KB
/
gps2median.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
function varargout=gps2median(fname,intvm,method,ifwrite,offsetm,utmtrue)
% [tims,meds,tor,mor]=GPS2MEDIAN(fname,intvm,method,ifwrite,offsetm,utmtrue)
%
% Converts an ASCII file with GPS position and times into another ASCII
% file that reports medians of the accuracy, defined as the mean
% squared deviation, with respect to a location known in true UTM.
%
% DATA FILE FORMAT IN DECIMAL DEGREES LATITUDE AND LONGITUDE:
%
% ladecimal,+lodecimal,year/mo/dy,hh:mm:ss,
% 40.345266,-74.655144,2015/11/25,00:54:01
%
% INPUT:
%
% fname Complete path and filename string [default: 'HargravesGPS_60cx']
% intvm Desired reporting interval (in minutes) [default: 5]
% method 1 Exact mapping by binning to intervals (exact, slow!) [default]
% 2 Interpolated to sequential intervals (approximate, fast!)
% ifwrite 1 Writes another ASCII file with these data in DATENUM format
% 0 Does not write a new file [default]
% offsetm At which minute in the data set do we begin [default: 0]
% utmtrue True UTM easting and northing of the site whose accuracy we verify
%
% OUTPUT:
%
% tims The midpoint times of the intervals [in DATENUM format]
% compared to the first (potentially offset) sample
% -> For method 1, inherits non-equal time increments from the data
% -> For method 2, forces equal time increments except for large gaps
% meds The median accuracy values over those intervals
% -> For method 1, will get a long vector, potentially with NaNs
% -> For method 2, will get a short vector, without any Nans
% tor The original time axis (with respect to offsetm)
% mor The original accuracy values (with respect to offsetm)
%
% EXAMPLE:
%
% [times1,meds1]=gps2median([],[],1);
% [times2,meds2]=gps2median([],[],2);
%
% Last modified by fjsimons-at-alum.mit.edu, 02/11/2017
% This is very specifically, for Hargraves Hall, on Princeton Campus
% Suply the true location in UTM of the same zone
defval('utme', 529286.6939);
defval('utmn',4466132.8936);
% Daylight Saving Time ends in North America at this local time
dstend=datenum(2015,11,1,2,0,0);
% Default filename, interval, method, write-flag and offset
defval('fname','HargravesGPS_60cx')
defval('intvm',5)
defval('method',1)
defval('ifwrite',0)
defval('offsetm',0)
% BEGIN READING AND INTERPRETING OF THE DATA FILE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Load the data, open the file first
fid=fopen(fname);
% This creates a cell array with one cell per each column of the file
h=textscan(fid,'%f %f %s %s','Delimiter',',');
% The actual GPS readings, converted from decimal degrees to UTM coordinates
[gpse,gpsn,utmz]=deg2utm(h{1},h{2});
% Calculate ACCURACY in UTM coordinates; this now is the primary variable
gpsa=sqrt([gpse-utme].^2+[gpsn-utmn].^2);
% Convert the time into DATENUM format and order chronologically
gpst=flipud(datenum(strcat(h{3},h{4}),'yyyy/mm/ddHH:MM:SS'));
% Might not be the end of the world, but should look into it!
if length(gpst)~=length(unique(gpst))
% They could have been poorly sorted, and thus escaped sort | uniq detection
warning('Duplicate times detected');
end
% Turn into GMT as the weather station respected DST
% Check out this condition, which depends on the sampling rate and the
% precision of the representation of DATENUM and DATESTR, which isn't great
cond=min(find([gpst>((dstend-datenum(0,0,0,0,round(median(diff(gpst))*60*24),1)))]));
gpst(1:cond)=gpst(1:cond)-datenum(0,0,0,1,0,0);
% And obviously if we're into Spring again this will require adjustment
disp(sprintf('First date %s and last date %s',datestr(gpst(1)),datestr(gpst(end))))
% You must reference to the first sample (thus zero) for subdivision
gpst=[gpst-gpst(1,1)];
% Close the data file
fclose(fid);
% END READING AND INTERPRETING OF THE DATA FILE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% BEGIN MEDIAN MAPPING OF THE DATA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Define where the beginining of the data set is as a fraction of a day
beg=offsetm/24/60;
% Define the length interval of interest as a fraction of a day
intv=intvm/24/60;
% How many times will this interval - potentially - be repeated?
ntms=ceil([max(gpst)-beg]/intv);
% Initialize the medians vector
meds=nan(ntms,1);
% Initialize the medians plot line handles
medp=nan(ntms,1);
% Might as well cut the data off altogether if there is an offset
% Note that this is necessary for method 2
gpsa =gpsa(gpst>=beg);
gpst=gpst(gpst>=beg);
% Now do the actual calculation
switch method
case 1
%% METHOD 1
% The way of the "for" loop - this is very slow
more off
tic
ent=beg+intv;
% Go through the time intervals
for index=1:ntms
% Report in minutes but only every so often
if mod(index-1,ntms/10)==0
disp(sprintf('Working between minutes %5.5i and %5.5i',...
floor(beg*60*24),ceil(ent*60*24)))
end
% Use NANMEDIAN in case there are NaNs in the data vector
meds(index)=nanmedian(gpsa(gpst>=beg & gpst<ent));
% Update the beginning and the end
beg=ent;
ent=ent+intv;
end
toc
% Output - add the time reference and the offset back in
meds=meds';
tims=[intv*[1:ntms]-intv/2]+offsetm/24/60;
case 2
% METHOD 2
% There has to be a quicker way!
tic
% Figure out the median sampling intervals
newdt=median(diff(gpst));
% Report in seconds if you must
disp(sprintf('The median sampling interval in seconds is %f',...
newdt*60*60*24))
% Snap every value to the nearest increment of newdt seconds, this is better for data drops
newt=round(gpst/newdt)*newdt;
% Could consider reporting norm([gpst-newt]) to get a feel for the interpolation
% Interpolate the data to the median sampling intervals
gpsai=interp1(gpst,gpsa,newt);
% Rearrange them by sets of intv at a time, or nearly so, almost all
multp=round(intv/newdt);
% Report in samples if you must
disp(sprintf('The number of samples taken together consecutively is %i',...
multp))
% This is roughly how many of those will find into the vector that you have
multc=floor(length(gpsai)/multp);
% Could have saved us the initialization. Compute the medians
meds=nanmedian(reshape(gpsai(1:multp*multc),multp,multc),1);
% But... there's a couple you might have missed, so add their medians also
meds=[meds nanmedian(gpsai(multp*multc+1:end))];
toc
% From this you can learn at which time "meds" should be quoted
tims=newt([round(multp/2):multp:multp*multc ...
multp*multc+round([length(gpsai)-multp*multc]/2)])';
end
% END MEDIAN MAPPING OF THE DATA %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Output to a new file
if ifwrite==1
fid=fopen(sprintf('%s_%i_%i.txt',...
strtok(fname,'.'),intvm,method),'w');
fprintf(fid,'%9.3f %9.6f\n',[meds ; tims]);
fclose(fid);
end
% Output, if so desired
varns={tims,meds,gpst,gpsa};
varargout=varns(1:nargout);