-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathost.m
368 lines (327 loc) · 11.7 KB
/
ost.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
function varargout=ost(fname,tw,xcor,subts,xver,fmt)
% [c,o,s,t]=ost(fname,tw,xcor,subts,xver,fmt)
%
% Observation-synthetic-triplet. Reads in a binary file containing a
% triplet of variables, one independent followed by two independent
% ones in the order "observation" then "synthetic". Computes
% multiplicative and differential distance measures of the demeaned
% time series, and makes a revealing plot if explicitly instructed.
%
% INPUT:
%
% fname A file name string containing binaries t, o, and s
% ... or a matrix with Mx3 entries, used as input
% tw Beginning and end of the time window of interest
% inclusive, in the same unit as the array input t
% xcor 1 option 'coeff' for XCORR [default]
% 2 option 'unbiased' for XCORR [bad plot axes...]
% 3 option 'biased' for XCORR [bad plot axes...]
% 4 option 'none' for XCORR [bad plot axes...]
% 5 using XDIST with individual demeaning [preferred]
% 6 using XDIST without individual demeaning
% subts Subset in t units for XCORR/RMSE comparison (default: [central half])
% and also used for options 5 and 6 to not pick the edges
% xver 1 Makes a plot [default]
% 0 does not
% fmt The binary format of the data file (default: 'float32')
%
% OUTPUT:
%
% c A structure with the comparisons, the measures XCORR and RDIST
% o One dependent variable (observation)
% s Another dependent variable (synthetic)
% t The independent variable (time)
%
% EXAMPLE:
%
% ost % with no input - if you have the data file (see DATA)
%
% tt=linspace(0,10,101); o=cos(2*pi/3*tt); s=3*cos(2*pi/3*[tt-0.3]);
% c=ost([tt' o' s'],[2 8],1,[-1 1],1);
%
% comp={'Z','R','T'} ;
% ddir='/data1/fjsimons/POSTDOCS/MathurinWamba/Polynesia/DATA/C201505191525A_90_250_surface_wave';
% ozrt=reshape(loadb(fullfile(ddir,'C201505191525A.IU.AFI.obs.ZRT.bin')),[],3);
% szrt=reshape(loadb(fullfile(ddir,'C201505191525A.IU.AFI.syn.ZRT.bin')),[],3);
% compi=2; delt=0.2; % Work with the dt known from the outside
% c1=ost([[0:size(ozrt,1)-1]'*delt ozrt(:,compi) szrt(:,compi)],[1346.2 1966.0],1);
% c5=ost([[0:size(ozrt,1)-1]'*delt ozrt(:,compi) szrt(:,compi)],[1346.2 1966.0],5);
%
% ddir='/data1/fjsimons/POSTDOCS/MathurinWamba/Polynesia/DATA/C091496G_17_40_body_wave';
% ozrt=reshape(loadb(fullfile(ddir,'C091496G.XU.DOTA.obs.ZRT.bin')),[],3);
% szrt=reshape(loadb(fullfile(ddir,'C091496G.XU.DOTA.syn.ZRT.bin')),[],3);
% compi=2; delt=0.2;
% c1=ost([[0:size(ozrt,1)-1]'*delt ozrt(:,compi) szrt(:,compi)],[667.0 763.2],1);
% c5=ost([[0:size(ozrt,1)-1]'*delt ozrt(:,compi) szrt(:,compi)],[667.0 763.2,5);
%
% ddir='/data1/fjsimons/POSTDOCS/MathurinWamba/Polynesia/DATA/C201407041500A_40_100#surface_wave';
% ozrt=reshape(loadb(fullfile(ddir,'C201407041500A.G.TAOE.obs.ZRT.bin')),[],3);
% szrt=reshape(loadb(fullfile(ddir,'C201407041500A.G.TAOE.syn.ZRT.bin')),[],3);
% compi=1; delt=0.2;
% c1=ost([[0:size(ozrt,1)-1]'*delt ozrt(:,compi) szrt(:,compi)],[1769.0 2108.8],1);
% c5=ost([[0:size(ozrt,1)-1]'*delt ozrt(:,compi) szrt(:,compi)],[1769.0 2108.8],5);
%
% ddir='/data1/fjsimons/POSTDOCS/MathurinWamba/Polynesia/DATA/C201303102251A_40_100#body_wave';
% ozrt=reshape(loadb(fullfile(ddir,'C201303102251A.G.PPTF.obs.ZRT.bin')),[],3);
% szrt=reshape(loadb(fullfile(ddir,'C201303102251A.G.PPTF.syn.ZRT.bin')),[],3);
% compi=3; delt=0.2;
% c1=ost([[0:size(ozrt,1)-1]'*delt ozrt(:,compi) szrt(:,compi)],[1229.6 1028.2],1);
% c5=ost([[0:size(ozrt,1)-1]'*delt ozrt(:,compi) szrt(:,compi)],[1229.6 1028.2],5);
%% Check the example in XCORR and apply RDIST for comparison!
%
% SEE ALSO: XCORR, XDIST, RDIST, and adist
%
% Written for 9.7.0.1190202 (R2019b)
% Last modified by fjsimons-at-alum.mit.edu, 03/17/2023
%% INPUT %%
% Defaults
defval('fname','IU.AFI_Z.bin')
defval('tw',[2275 2854])
defval('xver',1)
defval('xcor',1)
defval('subts',[-1 1]*[max(tw)-min(tw)]/2)
% Prepare for options
xco={'coeff','unbiased','biased','none','xdist','xdist nm'};
if isstr(fname)
defval('fmt','float32')
% Load it, it was just a straight bitwrite
ost=loadb(fname,fmt);
% Split it
tt=ost( 1: length(ost)/3);
o=ost( length(ost)/3+1:2*length(ost)/3);
s=ost(2*length(ost)/3+1: length(ost));
else
% Take what's given as a data matrix
tt=fname(:,1);
o=fname(:,2);
s=fname(:,3);
end
% Sampling step of these two signals in seconds
delt=tt(2)-tt(1);
% Talk about what it really is
if length(unique(tt))~=1
disp(sprintf('dt = %4.2f ; mean %4.2e ; median %4.2e ; std %4.2e',...
delt,mean(diff(tt)),median(diff(tt)),std(diff(tt))))
end
%% CALCULATION %%
% The indices corresponding to the time window
tmi=min(find(tt>=min(tw)));
tma=max(find(tt<=max(tw)));
% Identify the segments and demean
wt=tt(tmi:tma);
ws= s(tmi:tma)-mean(s(tmi:tma));
wo= o(tmi:tma)-mean(o(tmi:tma));
%% Multiplicative distance using XCORR %%%%%%%%%%%%%%%%%%%%%%%%%%
% Compute the appropriate correlation
kb
if xcor<5
% Using the MATLAB function out of the box!
[x,t]=xcorr(wo,ws,xco{xcor}); t=t(:);
elseif xcor==5
% Overlapping portions individually further demeaned
% Only look at the central lags since the edges are off
[x,t]=xdist(wo,ws,matranges(round(subts/delt)),1); t=t(:);
elseif xcor==6
% Overlapping portions not individually further demeaned
% Only look at the central lags since the edges are off
[x,t]=xdist(wo,ws,matranges(round(subts/delt)),0); t=t(:);
end
% Find the (arg)maximum, negative offset means ws is delayed wrt wo
[xm,j]=max(x);
txm=t(j);
% Convert tau to units using the sampling steps
txms=delt*txm;
% The zero-lag cross-correlation... is at length(ws)=length(wo) for
% XCORR but could be anywhere for XDIST options 5 and 6
x0=x(find(t==0));
%% Difference distance using RDIST %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The observation-normalized rmse at optimal CROSS-CORRELATION lag,
% i.e. shifted into alignment and taking care of the non-overlapping edges!
rtxm=rdist(wo,ws,txm);
% The zero-lag normalized rmse
r0=sqrt(sum([ws-wo].^2)/sum(wo.^2));
% The normalized rmse at a subset around the XCORR/XDIST maximum
[r,ts]=rdist(wo,ws,txm+matranges(round(subts/delt))); ts=ts(:);
% The amplitude scaling at the the XCORR/XDIST maximum
[dlnA,DlnA]=adist(wo,ws,txm);
% The amplitude scaling without any shifting
[dlnA0,DlnA0]=adist(wo,ws,0);
% Find the (arg)minimum, negative offset means ws is delayed wrt wo
[rm,j]=min(r);
trm=ts(j);
% Convert ts to units
trms=delt*trm;
% What is the XCORR/XDIST optimized at the optimal rmse lag
xtrm=x(find(t==ts(j)));
% Make the output structure
% Cross-correlation option, lags, values
c.xco=xco{xcor};
c.t=t;
c.x=x;
% Relative rmse and lag subset
c.ts=ts;
c.r=r;
% The (arg)max of cross-correlation, in sample index and time
c.txm=txm;
c.txms=txms;
c.xm=xm;
% Value as presented at zero lag without any shifting
c.x0=x0;
% Cross-correlation at the rmse optimum (minimum)
c.xtrm=xtrm;
% The (arg)min of relative rmse, in sample index and time
c.trm=trm;
c.trms=trms;
c.rm=rm;
% Value as presented at zero lag without any shifting
c.r0=r0;
% rmse at the cross-correlation optimum (maximum)
c.rtxm=rtxm;
% The amplitude factors
c.dlnA=dlnA;
c.dlnA0=dlnA0;
% The beginning and start times in units
c.relbeg=min(tw);
c.relend=max(tw);
% The beginning and start times in samples
c.relbegs=round(min(tw)/delt);
c.relends=round(max(tw)/delt);
% Now make the plot if you like
if nargout==0 || xver==1
% Here is the plot
clf
set(gcf,'defaultLegendAutoUpdate','off');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Plots the data and the analysis window
subplot(311)
% Plot the observations, i.e. the first time series
plot(tt,o,'r','LineWidth',1); hold on
% Plot the synthetics, i.e. the second time series
plot(tt,s,'b')
axis tight
yls1=ylim;
% Plot the observation windows
plot([wt(1) wt(1) ],yls1,'k')
plot([wt(end) wt(end)],yls1,'k')
hold off
grid on
openup(gca,6,30)
yls2=ylim;
hold on
th(1)=text(wt(1)+[wt(end)-wt(1)]/2,yls1(2)-[yls1(2)-yls2(2)]/2,...
sprintf('X(0) = %4.2f X(%s) = %4.2f %s = %4.1f s X(%s) = %4.2f',...
x0,'\tau',...
xm,'\tau',txms,...
'\sigma',xtrm));
th(2)=text(wt(1)+[wt(end)-wt(1)]/2,yls1(1)+[yls2(1)-yls1(1)]/2,...
sprintf('R(0) = %i%s R(%s) = %i%s %s = %4.1f s R(%s) = %i%s',...
round(100*r0),'%','\sigma',...
round(100*rm),'%','\sigma',trms,...
'\tau',round(100*rtxm),'%'));
hold off
set(th,'HorizontalAlignment','center')
longticks(gca,2)
ylabel('traces')
xlabel('time [s]')
if isstr(fname)
titi=title(nounder(fname));
else
titi=title('Signals input by user on command line');
end
movev(titi,range(yls2)/20)
legend('observation','synthetic')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Plots a zoom of the analysis window
subplot(312)
% Observation
plot(wt,wo,'r','LineWidth',1); hold on
% Synthetic
plot(wt,ws,'b')
% Plot the synthetic after shifting by cross-correlation optimizer
% and rescaling by the amplitude factor
oof=exp(dlnA);
if txm~=0
pda=plot(tt(tmi+txm:tma+txm),oof*ws,'k--');
if txm<0
legend(pda,sprintf(...
'synthetic advanced by %4.1f s\n%15sand scaled by %4.2f',...
abs(txms),'',oof),'Location','NorthEast')
elseif txm>0
legend(pda,sprintf(...
'synthetic delayed by %4.1f s\n%15sand scaled by %4.2f',...
abs(txms),'',oof),'Location','NorthWest')
end
else
disp(sprintf('%s\n%s','At this sampling, and with this window',...
'the two time series ARE optimally aligned with respect to XCORR/XDIST'))
end
axis tight
yls1=ylim;
% Plot the original and overlapping windows
ma=plot([wt(end) wt(end)],yls1,'Color','k');
mi=plot([wt(1) wt(1)],yls1,'Color','k');
% Adjust windows to show where you're really normalizing the rmse
if txm<0
delete(ma)
plot([wt(end)+txms wt(end)+txms],yls1,'Color',grey)
elseif txm>0
delete(mi)
plot([wt(1)+txms wt(1)+txms],yls1,'Color',grey)
end
hold off
openup(gca,6,20)
% The horizontal limits widened a bit
xlim([wt(1) wt(end)]+[wt(end)-wt(1)]/10*[-1 1])
grid on
longticks(gca,2)
ylabel('segments')
xlabel('time [s]')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Plots the correlation coefficient and the rescaled rmse
subplot(325)
plot(t*delt,x,'m','LineWidth',1)
hold on
% If you want to see what the other one is
plot(ts*delt,scale(-r,[-1 1]),'Color',grey)
grid on
legend('x','r''')
% Mark the maximum of the cross-correlation coefficient
plot(txms,xm,'^','MarkerFaceColor','m','MarkerEdgeColor','m')
axis tight
ylim([-1.15 1.15])
xlabel('lag [s]')
ylabel(sprintf('x | %s cross-correl',xco{xcor}))
% The horizontal axis are all possible lags
xls=xlim;
hold on
text(xls(1)+[xls(2)-xls(1)]/20, 1,sprintf('%s = %4.2f','X(\tau)',xm))
text(xls(1)+[xls(2)-xls(1)]/20,-1,sprintf('%s = %4.2f','dlnA',dlnA))
hold off
longticks(gca)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Plots the rmse and the rescaled correlation coefficient
subplot(326)
plot(ts*delt,r*100,'Color',grey,'LineWidth',1)
xlim(xls)
grid on
hold on
% If you want to see what the other one is
plot(t*delt,scale(-x,minmax(r*100)),'m')
% Mark the minimum of the relative root-mean-squared error
plot(trms,rm*100,'v','MarkerFaceColor',grey,'MarkerEdgeColor',grey)
grid on
legend('r','x''','Location','SouthEast')
yls=ylim;
ylim([-yls(2)/15 yls(2)])
xlabel('lag [s]')
ylabel(sprintf('r | relative rmse (%s)','%'))
xls=xlim;
hold on
text(xls(1)+[xls(2)-xls(1)]/20,0,sprintf('%s = %4.2f','R(\sigma)',rm))
hold off
set(gca,'YAxisLocation','r')
longticks(gca)
end
% Optional output
varns={c,o,s,tt};
varargout=varns(1:nargout);