-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathraypath.m
80 lines (71 loc) · 2.37 KB
/
raypath.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
function [t,rxy,pxy]=raypath(qxy,alfa,velfun,t0tFtNum,ymin,ymax)
% [t,rxy,pxy]=raypath(qxy,alfa,velfun,t0tFtNum,ymin,ymax)
%
% Calculates ray paths (position, time and slowness) in Cartesian
% coordinates for a (potentially) TWO-dimensional velocity field via the
% characteristics of the eikonal equation, the ray equations.
%
% INPUT:
%
% qxy Source position [x,y], in meters, x horizontal, y down
% alfa Take-off angle anticlockwise with the vertical, in radians
% so sin(alfa)/speed is the slowness along x, the
% "horizontal" slowness, or constant "ray parameter"
% pi is straight up, pi/2 is horizontal, 0 is straight down
% velfun Name of a velocity function [default: 'linmod']
% t0tFtnum Time specifications, in seconds, seconds, and a number
% for use in LINSPACE, or if no last number, until tF
% ymin Depth above which we consider the result null and void
% as the time integration may have gone on for too long
% ymax Depth below which we consider the result null and void
% as the time integration may have gone on for too long.
%
% OUTPUT:
%
% t Time, in s
% rxy Cartesian position of the ray, in meters
% pxy Slowness along the x and y directions, in seconds/meter
%
% EXAMPLES:
%
% [t,rxy,pxy]=raypath([0 14500],50*pi/180,'bullen');
% plot(rxy(:,1),rxy(:,2)); hold on
%
% bullenrays
%
% SEE ALSO:
%
% RAYEQ, RAYPATHPOL, RAYEQPOL, BULLENRAYS
%
% Last modified by fjsimons-at-alum.mit.edu, 06/09/2021
% The default velocity model
% The default velocity model
defval('velfun','linmod')
% Do not leave the Earth
defval('ymin',0)
% Do not leave the Earth
defval('ymax',fralmanac('Radius','Earth'))
% Time span - see notes under RAYPATHPOL
defval('t0tFtNum',[0 30 250]);
if prod(size(t0tFtNum))==3
tspan=linspace(t0tFtNum(1),t0tFtNum(2),t0tFtNum(3));
else
tspan=t0tFtNum;
end
% P-velocity hardcoded here
pors=1;
% Find the speed applicable at the initial conditions
eval(sprintf('c=%s(qxy,%i,1);',velfun,pors))
% Initial conditions
Y0=[qxy sin(alfa)/c cos(alfa)/c];
% Integration of ray equations
options=odeset('RelTol',1e-8);
[t,Y]=ode45('rayeq',tspan,Y0,options,velfun);
% Protect against erroneous time steps
t=t(Y(:,2)>=ymin,:);
Y=Y(Y(:,2)>=ymin,:);
t=t(Y(:,2)<=ymax,:);
Y=Y(Y(:,2)<=ymax,:);
% Output
rxy=Y(:,1:2);
pxy=Y(:,3:4);