-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcurvedist.m
163 lines (153 loc) · 4.14 KB
/
curvedist.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
function varargout=curvedist(x1,y1,x2,y2,plotit,plotthat,orien)
% [d,EX,WY,ph]=CURVEDIST(x1,y1,x2,y2,plotit,plotthat,orien)
%
% Calculates the distance between two near-vertical or near-horizontal
% smooth curves, each of them splining a "layer" and returning the "layer
% thickness". The points are triplets, three points on each interface. The
% curves shouldn't cross.
%
% INPUT:
%
% x1,x2 The x points of the triplets
% y1,y2 The y points of the triplets
% plotit 1 Plots stuff [default]
% plotthat 1 Plots more stuff [default]
% orien 'vertical' [default]
% 'horizontal' [default]
%
% OUTPUT:nn
%
% d The distance between the curves
% EX The x points defining the distance
% WY The y points defining the distance
% ph The line handle
%
% EXAMPLE:
%
% Called without argument, gives an example
%
% Last modified by fjsimons-at-alum.mit.edu, 11/11/2015
defval('plotit',1)
defval('plotthat',1)
defval('ph',[])
defval('orien','vertical')
defval('x1',[1 23 40]+randn(1,3)*1)
defval('y1',[100 50 3]+randn(1,3)*1)
defval('x2',[5 27 47]+randn(1,3)*1)
defval('y2',[100 50 3]+randn(1,3)*1)
% Make sure the data is presented as a row vector
x1=x1(:)';
x2=x2(:)';
y1=y1(:)';
y2=y2(:)';
% Tested for both even- and odd-length arrays
switch orien
case 'vertical'
yy=[linspace(min([y1 y2]),max([y1 y2]),100+1)];
% Fits a spline through the pairs of three points
xx1=spline(y1,x1,yy);
xx2=spline(y2,x2,yy);
% This only for testing
if plotthat==1
plot(x1,y1,'bo')
hold on
plot(x2,y2,'rs')
plot(xx1,yy)
plot(xx2,yy)
hold off
end
% Compute the distances
dc=zeros(length(xx1),1);
dci=zeros(length(xx1),1);
for index=1:length(xx1)
% All the distances between this point and all the others; take the minimum
[dc(index),dci(index)]=min(sqrt((xx1(index)-xx2).^2+(yy(index)-yy).^2));
% This only for testing
if plotthat==1
hold on
p=plot([xx1(index) xx2(dci(index))],[yy(index) yy(dci(index))],'g');
end
end
case 'horizontal'
xx=[linspace(min([x1 x2]),max([x1 x2]),100+1)];
% Fits a spline through the pairs of three points
yy1=spline(x1,y1,xx);
yy2=spline(x2,y2,xx);
% This only for testing
if plotthat==1
plot(x1,y1,'bo')
hold on
plot(x2,y2,'rs')
plot(xx,yy1)
plot(xx,yy2)
hold off
end
% Compute the distances
dc=zeros(length(yy1),1);
dci=zeros(length(yy1),1);
for index=1:length(yy1)
% All the distances between this point and all the others; take the minimum
[dc(index),dci(index)]=min(sqrt((yy1(index)-yy2).^2+(xx(index)-xx).^2));
% This only for testing
if plotthat==1
hold on
p=plot([xx(index) xx(dci(index))],[yy1(index) yy2(dci(index))],'g');
end
end
end
% Now take the median of the minimum distances
[ds,di]=sort(dc);
% And sort the indices to the corresponding points accordingly
dci=dci(di);
if mod(length(dc),2)
% disp('Odd')
% For an odd-length array
whereat=ceil(length(dc)/2);
% The distance
d=ds(whereat);
else
% disp('Even')
% For an even-length array
whereat=length(dc)/2+[0 1];
% The distance
d=mean(ds(whereat));
end
% Make no difference between odd and even as what lies to the right
% or the left of the median may or may not be close to the x,y points
% Slight disadvantage of the visualization is that the median distance is
% not quoted exactly at the point where the median is reached
switch orien
case 'vertical'
xd1=xx1(di(whereat(1)));
yd1=yy(di(whereat(1)));
xd2=xx2(dci(whereat(1)));
yd2=yy(dci(whereat(1)));
case 'horizontal'
xd1=xx(di(whereat(1)));
yd1=yy1(di(whereat(1)));
xd2=xx(dci(whereat(1)));
yd2=yy2(dci(whereat(1)));
end
% Check that the result is the formal median
difer(d-median(ds),[],[],NaN)
% The final distance line segment
EX=[xd1 xd2];
WY=[yd1 yd2];
if plotit==1
hold on
ph=plot(EX,WY,'k');
hold off
% Only for testing
if plotthat==1
axis equal tight
switch orien
case 'vertical'
xlim([min([xx1 xx2]) max([xx1 xx2])])
case 'horizontal'
ylim([min([yy1 yy2]) max([yy1 yy2])])
end
end
end
% Output
varns={d,EX,WY,ph};
varargout=varns(1:nargout);