forked from swuxyj/DeepHash-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathADSH.py
138 lines (113 loc) · 4.77 KB
/
ADSH.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from utils.tools import *
from network import *
import os
import torch
import torch.optim as optim
from tqdm import tqdm
import time
import numpy as np
torch.multiprocessing.set_sharing_strategy('file_system')
# ADSH(AAAI2018)
# paper [Asymmetric Deep Supervised Hashing](https://cs.nju.edu.cn/lwj/paper/AAAI18_ADSH.pdf)
# code1 [ADSH matlab + pytorch](https://github.com/jiangqy/ADSH-AAAI2018)
# code2 [ADSH_pytorch](https://github.com/TreezzZ/ADSH_PyTorch)
def get_config():
config = {
"gamma": 200,
"num_samples": 2000,
"max_iter": 150,
"epoch": 3,
"test_map": 10,
# "optimizer": {"type": optim.SGD, "optim_params": {"lr": 0.001, "weight_decay": 5e-4}},
# "optimizer": {"type": optim.RMSprop, "optim_params": {"lr": 1e-5, "weight_decay": 10 ** -5}},
"optimizer": {"type": optim.Adam, "optim_params": {"lr": 1e-4, "weight_decay": 1e-5}},
"info": "[ADSH]",
"resize_size": 256,
"crop_size": 224,
"batch_size": 64,
"net": AlexNet,
"dataset": "cifar10-1",
# "dataset": "nuswide_21",
"save_path": "save/ADSH",
# "device":torch.device("cpu"),
"device": torch.device("cuda:1"),
"bit_list": [48],
}
# if config["dataset"] == "nuswide_21":
# config["gamma"] = 0
config = config_dataset(config)
return config
def calc_sim(database_label, train_label):
S = (database_label @ train_label.t() > 0).float()
# soft constraint
r = S.sum() / (1 - S).sum()
S = S * (1 + r) - r
return S
def train_val(config, bit):
device = config["device"]
num_samples = config["num_samples"]
train_loader, test_loader, dataset_loader, num_train, num_test, num_dataset = get_data(config)
# get database_labels
clses = []
for _, cls, _ in tqdm(dataset_loader):
clses.append(cls)
database_labels = torch.cat(clses).to(device).float()
net = config["net"](bit).to(device)
optimizer = config["optimizer"]["type"](net.parameters(), **(config["optimizer"]["optim_params"]))
Best_mAP = 0
V = torch.zeros((num_dataset, bit)).to(device)
for iter in range(config["max_iter"]):
current_time = time.strftime('%H:%M:%S', time.localtime(time.time()))
print("%s[%2d/%2d][%s] bit:%d, dataset:%s, training...." % (
config["info"], iter + 1, config["max_iter"], current_time, bit, config["dataset"]), end="")
net.train()
# sampling and construct similarity matrix
select_index = np.random.permutation(range(num_dataset))[0: num_samples]
if "cifar" in config["dataset"]:
train_loader.dataset.data = np.array(dataset_loader.dataset.data)[select_index]
train_loader.dataset.targets = np.array(dataset_loader.dataset.targets)[select_index]
else:
train_loader.dataset.imgs = np.array(dataset_loader.dataset.imgs)[select_index].tolist()
sample_label = database_labels[select_index]
Sim = calc_sim(sample_label, database_labels)
U = torch.zeros((num_samples, bit)).to(device)
train_loss = 0
for epoch in range(config["epoch"]):
for image, label, ind in train_loader:
image = image.to(device)
label = label.to(device).float()
net.zero_grad()
S = calc_sim(label, database_labels)
u = net(image)
u = u.tanh()
U[ind, :] = u.data
square_loss = (u @ V.t() - bit * S).pow(2)
quantization_loss = config["gamma"] * (V[select_index[ind]] - u).pow(2)
loss = (square_loss.sum() + quantization_loss.sum()) / (num_train * u.size(0))
train_loss += loss.item()
loss.backward()
optimizer.step()
train_loss = train_loss / len(train_loader) / epoch
print("\b\b\b\b\b\b\b loss:%.3f" % (train_loss))
# learning binary codes: discrete coding
barU = torch.zeros((num_dataset, bit)).to(device)
barU[select_index, :] = U
# calculate Q
Q = -2 * bit * Sim.t() @ U - 2 * config["gamma"] * barU
for k in range(bit):
sel_ind = np.setdiff1d([ii for ii in range(bit)], k)
V_ = V[:, sel_ind]
U_ = U[:, sel_ind]
Uk = U[:, k]
Qk = Q[:, k]
# formula 10
V[:, k] = -(2 * V_ @ (U_.t() @ Uk) + Qk).sign()
if (iter + 1) % config["test_map"] == 0:
Best_mAP = validate(config, Best_mAP, test_loader, dataset_loader, net, bit, epoch, num_dataset)
def main():
config = get_config()
for bit in config["bit_list"]:
config["pr_curve_path"] = f"log/alexnet/ADSH_{config['dataset']}_{bit}.json"
train_val(config, bit)
if __name__ == "__main__":
main()