-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathinference.py
623 lines (487 loc) · 23.8 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
import argparse
import configparser
import os
import pickle
import sys
import h5py
import json
from collections import OrderedDict
from glob import glob
from math import floor, log10
import numpy as np
import kaldi_io
import torch
import uvloop
from data_io import SpeakerTestDataset, odict_from_2_col, SpeakerDataset
from kaldi_io import read_vec_flt
from kaldiio import ReadHelper
from models.extractors import ETDNN, FTDNN, XTDNN
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_curve
from sklearn.metrics.pairwise import cosine_distances, cosine_similarity
from sklearn.preprocessing import normalize
from tqdm import tqdm
from utils import SpeakerRecognitionMetrics
def mtd(stuff, device):
if isinstance(stuff, torch.Tensor):
return stuff.to(device)
else:
return [mtd(s, device) for s in stuff]
def parse_args():
parser = argparse.ArgumentParser(description='Test SV Model')
parser.add_argument('--cfg', type=str, default='./configs/example_speaker.cfg')
parser.add_argument('--best', action='store_true', default=False, help='Use best model')
parser.add_argument('--checkpoint', type=int, default=-1, # which model to use, overidden by 'best'
help='Use model checkpoint, default -1 uses final model')
args = parser.parse_args()
assert os.path.isfile(args.cfg)
return args
def parse_config(args):
assert os.path.isfile(args.cfg)
config = configparser.ConfigParser()
config.read(args.cfg)
args.train_data = config['Datasets'].get('train')
assert args.train_data
args.test_data = config['Datasets'].get('test')
args.model_type = config['Model'].get('model_type', fallback='XTDNN')
assert args.model_type in ['XTDNN', 'ETDNN', 'FTDNN']
args.classifier_heads = config['Model'].get('classifier_heads').split(',')
assert len(args.classifier_heads) <= 3, 'Three options available'
assert len(args.classifier_heads) == len(set(args.classifier_heads))
for clf in args.classifier_heads:
assert clf in ['speaker', 'nationality', 'gender', 'age', 'age_regression']
args.classifier_types = config['Optim'].get('classifier_types').split(',')
assert len(args.classifier_heads) == len(args.classifier_types)
args.classifier_loss_weighting_type = config['Optim'].get('classifier_loss_weighting_type', fallback='none')
assert args.classifier_loss_weighting_type in ['none', 'uncertainty_kendall', 'uncertainty_liebel', 'dwa']
args.dwa_temperature = config['Optim'].getfloat('dwa_temperature', fallback=2.)
args.classifier_loss_weights = np.array(json.loads(config['Optim'].get('classifier_loss_weights'))).astype(float)
assert len(args.classifier_heads) == len(args.classifier_loss_weights)
args.classifier_lr_mults = np.array(json.loads(config['Optim'].get('classifier_lr_mults'))).astype(float)
assert len(args.classifier_heads) == len(args.classifier_lr_mults)
# assert clf_type in ['l2softmax', 'adm', 'adacos', 'xvec', 'arcface', 'sphereface', 'softmax']
args.classifier_smooth_types = config['Optim'].get('classifier_smooth_types').split(',')
assert len(args.classifier_smooth_types) == len(args.classifier_heads)
args.classifier_smooth_types = [s.strip() for s in args.classifier_smooth_types]
args.label_smooth_type = config['Optim'].get('label_smooth_type', fallback='None')
assert args.label_smooth_type in ['None', 'disturb', 'uniform']
args.label_smooth_prob = config['Optim'].getfloat('label_smooth_prob', fallback=0.1)
args.input_dim = config['Hyperparams'].getint('input_dim', fallback=30)
args.embedding_dim = config['Hyperparams'].getint('embedding_dim', fallback=512)
args.num_iterations = config['Hyperparams'].getint('num_iterations', fallback=50000)
args.model_dir = config['Outputs']['model_dir']
if not hasattr(args, 'basefolder'):
args.basefolder = config['Outputs'].get('basefolder', fallback=None)
args.log_file = os.path.join(args.model_dir, 'train.log')
args.results_pkl = os.path.join(args.model_dir, 'results.p')
args.num_age_bins = config['Misc'].getint('num_age_bins', fallback=10)
args.age_label_smoothing = config['Misc'].getboolean('age_label_smoothing', fallback=False)
return args
def test(generator, ds_test, device, mindcf=False):
generator.eval()
all_embeds = []
all_utts = []
num_examples = len(ds_test.veri_utts)
with torch.no_grad():
for i in range(num_examples):
feats, utt = ds_test.__getitem__(i)
feats = feats.unsqueeze(0).to(device)
embeds = generator(feats)
all_embeds.append(embeds.cpu().numpy())
all_utts.append(utt)
metric = SpeakerRecognitionMetrics(distance_measure='cosine')
all_embeds = np.vstack(all_embeds)
all_embeds = normalize(all_embeds, axis=1)
all_utts = np.array(all_utts)
utt_embed = OrderedDict({k: v for k, v in zip(all_utts, all_embeds)})
emb0 = np.array([utt_embed[utt] for utt in ds_test.veri_0])
emb1 = np.array([utt_embed[utt] for utt in ds_test.veri_1])
scores = metric.scores_from_pairs(emb0, emb1)
eer, mindcf1 = metric.compute_min_cost(scores, 1 - ds_test.veri_labs)
generator.train()
if mindcf:
return eer, mindcf1, None
else:
return eer
def test_fromdata(generator, all_feats, all_utts, ds_test, device, mindcf=False):
generator.eval()
all_embeds = []
with torch.no_grad():
for feats in all_feats:
feats = feats.unsqueeze(0).to(device)
embeds = generator(feats)
all_embeds.append(embeds.cpu().numpy())
metric = SpeakerRecognitionMetrics(distance_measure='cosine')
all_embeds = np.vstack(all_embeds)
all_embeds = normalize(all_embeds, axis=1)
all_utts = np.array(all_utts)
utt_embed = OrderedDict({k: v for k, v in zip(all_utts, all_embeds)})
emb0 = np.array([utt_embed[utt] for utt in ds_test.veri_0])
emb1 = np.array([utt_embed[utt] for utt in ds_test.veri_1])
scores = metric.scores_from_pairs(emb0, emb1)
eer, mindcf1 = metric.compute_min_cost(scores, 1 - ds_test.veri_labs)
generator.train()
if mindcf:
return eer, mindcf1, None
else:
return eer
def test_all_factors_multids(model_dict, ds_test, dsl, label_types, device):
assert ds_test.test_mode
for m in model_dict:
model_dict[m]['model'].eval()
label_types = [l for l in label_types if l not in ['speaker', 'rec']]
with torch.no_grad():
feats, label_dict, all_utts = ds_test.get_test_items()
all_embeds = []
pred_dict = {m: [] for m in label_types}
for feat in tqdm(feats):
feat = feat.unsqueeze(0).to(device)
embed = model_dict['generator']['model'](model_dict['{}_ilayer'.format(dsl)]['model'](feat))
for m in label_types:
dictkey = '{}_{}'.format(dsl, m)
pred = torch.argmax(model_dict[dictkey]['model'](embed, label=None), dim=1)
pred_dict[m].append(pred.cpu().numpy()[0])
all_embeds.append(embed.cpu().numpy())
accuracy_dict = {m: np.equal(label_dict[m], pred_dict[m]).sum() / len(all_utts) for m in label_types}
metric = SpeakerRecognitionMetrics(distance_measure='cosine')
all_embeds = np.vstack(all_embeds)
all_embeds = normalize(all_embeds, axis=1)
all_utts = np.array(all_utts)
utt_embed = OrderedDict({k: v for k, v in zip(all_utts, all_embeds)})
emb0 = np.array([utt_embed[utt] for utt in ds_test.veri_0])
emb1 = np.array([utt_embed[utt] for utt in ds_test.veri_1])
scores = metric.scores_from_pairs(emb0, emb1)
print('Min score: {}, max score {}'.format(min(scores), max(scores)))
eer, mindcf1 = metric.compute_min_cost(scores, 1 - ds_test.veri_labs)
for m in model_dict:
model_dict[m]['model'].train()
return eer, mindcf1, accuracy_dict
def test_all_factors(model_dict, ds_test, device):
assert ds_test.test_mode
for m in model_dict:
model_dict[m]['model'].eval()
label_types = [l for l in ds_test.label_types if l in model_dict]
with torch.no_grad():
feats, label_dict, all_utts = ds_test.get_test_items()
all_embeds = []
pred_dict = {m: [] for m in label_types}
for feat in tqdm(feats):
feat = feat.unsqueeze(0).to(device)
embed = model_dict['generator']['model'](feat)
for m in label_types:
if m.endswith('regression'):
pred = model_dict[m]['model'](embed, label=None)
else:
pred = torch.argmax(model_dict[m]['model'](embed, label=None), dim=1)
pred_dict[m].append(pred.cpu().numpy()[0])
all_embeds.append(embed.cpu().numpy())
accuracy_dict = {m: np.equal(label_dict[m], pred_dict[m]).sum() / len(all_utts) for m in label_types if not m.endswith('regression')}
for m in label_types:
if m.endswith('regression'):
accuracy_dict[m] = np.mean((label_dict[m] - pred_dict[m])**2)
if ds_test.veripairs:
metric = SpeakerRecognitionMetrics(distance_measure='cosine')
all_embeds = np.vstack(all_embeds)
all_embeds = normalize(all_embeds, axis=1)
all_utts = np.array(all_utts)
utt_embed = OrderedDict({k: v for k, v in zip(all_utts, all_embeds)})
emb0 = np.array([utt_embed[utt] for utt in ds_test.veri_0])
emb1 = np.array([utt_embed[utt] for utt in ds_test.veri_1])
scores = metric.scores_from_pairs(emb0, emb1)
print('Min score: {}, max score {}'.format(min(scores), max(scores)))
eer, mindcf1 = metric.compute_min_cost(scores, 1 - ds_test.veri_labs)
else:
eer, mindcf1 = 0.0, 0.0
for m in model_dict:
model_dict[m]['model'].train()
return eer, mindcf1, accuracy_dict
def test_all_factors_ensemble(model_dict, ds_test, device, feats, all_utts, exclude=[], combine='sum'):
assert ds_test.test_mode
for m in model_dict:
model_dict[m]['model'].eval()
label_types = [l for l in ds_test.label_types if l in model_dict]
set_veri_utts = set(list(ds_test.veri_0) + list(ds_test.veri_1))
aux_embeds_dict = {m: [] for m in label_types}
with torch.no_grad():
veri_embeds = []
veri_utts = []
for feat, utt in tqdm(zip(feats, all_utts)):
if utt in set_veri_utts:
feat = feat.unsqueeze(0).to(device)
embed = model_dict['generator']['model'](feat)
veri_embeds.append(embed)
veri_utts.append(utt)
veri_embeds = torch.cat(veri_embeds)
for m in label_types:
task_embeds = model_dict[m]['model'](veri_embeds, label=None, transform=True)
aux_embeds_dict[m] = normalize(task_embeds.cpu().numpy(), axis=1)
veri_embeds = normalize(veri_embeds.cpu().numpy(), axis=1)
aux_embeds_dict['base'] = veri_embeds
metric = SpeakerRecognitionMetrics(distance_measure='cosine')
total_scores = []
for key in aux_embeds_dict:
if key not in exclude:
utt_embed = OrderedDict({k: v for k, v in zip(veri_utts, aux_embeds_dict[key])})
emb0 = np.array([utt_embed[utt] for utt in ds_test.veri_0])
emb1 = np.array([utt_embed[utt] for utt in ds_test.veri_1])
scores = metric.scores_from_pairs(emb0, emb1)
total_scores.append(scores)
if combine == 'sum':
total_scores = np.sum(np.array(total_scores), axis=0)
eer, mindcf1 = metric.compute_min_cost(total_scores, 1. - ds_test.veri_labs)
else:
total_scores = np.array(total_scores).T
lr_clf = LogisticRegression(solver='lbfgs')
lr_clf.fit(total_scores, 1. - ds_test.veri_labs)
weighted_scores = lr_clf.predict(total_scores)
eer, mindcf1 = metric.compute_min_cost(weighted_scores, 1. - ds_test.veri_labs)
for m in model_dict:
model_dict[m]['model'].train()
return eer, mindcf1
def test_enrollment_models(generator, ds_test, device, return_scores=False, reduce_method='mean_embed'):
assert reduce_method in ['mean_embed', 'mean_dist', 'max', 'min']
generator.eval()
all_embeds = []
all_utts = []
num_examples = len(ds_test)
with torch.no_grad():
for i in tqdm(range(num_examples)):
feats, utt = ds_test.__getitem__(i)
feats = feats.unsqueeze(0).to(device)
embeds = generator(feats)
all_embeds.append(embeds.cpu().numpy())
all_utts.append(utt)
metric = SpeakerRecognitionMetrics(distance_measure='cosine')
all_embeds = np.vstack(all_embeds)
all_embeds = normalize(all_embeds, axis=1)
all_utts = np.array(all_utts)
utt_embed = OrderedDict({k: v for k, v in zip(all_utts, all_embeds)})
model_embeds = OrderedDict({})
for i, model in enumerate(ds_test.models):
model_embeds[model] = np.array([utt_embed[utt] for utt in ds_test.m_utts[i]])
emb0s = np.array([model_embeds[u] for u in ds_test.models_eval])
emb1 = np.array([utt_embed[u] for u in ds_test.eval_utts])
mscore_means = []
mscore_stds = []
scores = []
for model_utts, test_utt in zip(emb0s, emb1):
if reduce_method == 'mean_embed':
model_std = model_utts.std(0)
model_mean = model_utts.mean(0)
scores.append(np.linalg.norm(test_utt - model_mean))
elif reduce_method == 'mean_dist':
dist_means = np.mean(np.array([np.linalg.norm(test_utt - e) for e in model_utts]))
scores.append(dist_means)
elif reduce_method == 'min':
scores.append(np.min(np.array([np.linalg.norm(test_utt - e) for e in model_utts])))
elif reduce_method == 'max':
scores.append(np.max(np.array([np.linalg.norm(test_utt - e) for e in model_utts])))
else:
print('do nothing')
scores = np.array(scores)
if return_scores:
return scores
eer, mindcf1 = metric.compute_min_cost(scores,
1 - ds_test.veri_labs)
generator.train()
return eer, mindcf1, scores
def test_nosil(generator, ds_test, device, mindcf=False):
generator.eval()
all_embeds = []
all_utts = []
num_examples = len(ds_test.veri_utts)
with torch.no_grad():
with ReadHelper(
'ark:apply-cmvn-sliding --norm-vars=false --center=true --cmn-window=300 scp:{0}/feats_trimmed.scp '
'ark:- | select-voiced-frames ark:- scp:{0}/vad_trimmed.scp ark:- |'.format(
ds_test.data_base_path)) as reader:
for key, feat in tqdm(reader, total=num_examples):
if key in ds_test.veri_utts:
all_utts.append(key)
feats = torch.FloatTensor(feat).unsqueeze(0).to(device)
embeds = generator(feats)
all_embeds.append(embeds.cpu().numpy())
metric = SpeakerRecognitionMetrics(distance_measure='cosine')
all_embeds = np.vstack(all_embeds)
all_embeds = normalize(all_embeds, axis=1)
all_utts = np.array(all_utts)
print(all_embeds.shape, len(ds_test.veri_utts))
utt_embed = OrderedDict({k: v for k, v in zip(all_utts, all_embeds)})
emb0 = np.array([utt_embed[utt] for utt in ds_test.veri_0])
emb1 = np.array([utt_embed[utt] for utt in ds_test.veri_1])
scores = metric.scores_from_pairs(emb0, emb1)
fpr, tpr, thresholds = roc_curve(1 - ds_test.veri_labs, scores, pos_label=1, drop_intermediate=False)
eer = metric.eer_from_ers(fpr, tpr)
generator.train()
if mindcf:
mindcf1 = metric.compute_min_dcf(fpr, tpr, thresholds, p_target=0.01)
mindcf2 = metric.compute_min_dcf(fpr, tpr, thresholds, p_target=0.001)
return eer, mindcf1, mindcf2
else:
return eer
def evaluate_deepmine(generator, ds_eval, device, outfile_path='./exp'):
os.makedirs(outfile_path, exist_ok=True)
generator.eval()
answer_col0 = []
answer_col1 = []
answer_col2 = []
with torch.no_grad():
for i in tqdm(range(len(ds_eval))):
model, enrol_utts, enrol_feats, eval_utts, eval_feats = ds_eval.__getitem__(i)
answer_col0.append([model for _ in range(len(eval_utts))])
answer_col1.append(eval_utts)
enrol_feats = mtd(enrol_feats, device)
model_embed = torch.cat([generator(x.unsqueeze(0)) for x in enrol_feats]).cpu().numpy()
model_embed = np.mean(normalize(model_embed, axis=1), axis=0).reshape(1, -1)
del enrol_feats
eval_feats = mtd(eval_feats, device)
eval_embeds = torch.cat([generator(x.unsqueeze(0)) for x in eval_feats]).cpu().numpy()
eval_embeds = normalize(eval_embeds, axis=1)
scores = cosine_similarity(model_embed, eval_embeds).squeeze(0)
assert len(scores) == len(eval_utts)
answer_col2.append(scores)
del eval_feats
answer_col0 = np.concatenate(answer_col0)
answer_col1 = np.concatenate(answer_col1)
answer_col2 = np.concatenate(answer_col2)
with open(os.path.join(outfile_path, 'answer_full.txt'), 'w+') as fp:
for m, ev, s in zip(answer_col0, answer_col1, answer_col2):
line = '{} {} {}\n'.format(m, ev, s)
fp.write(line)
with open(os.path.join(outfile_path, 'answer.txt'), 'w+') as fp:
for s in answer_col2:
line = '{}\n'.format(s)
fp.write(line)
if (answer_col0 == np.array(ds_eval.models_eval)).all():
print('model ordering matched')
else:
print('model ordering was not correct, need to fix before submission')
if (answer_col1 == np.array(ds_eval.eval_utts)).all():
print('eval utt ordering matched')
else:
print('eval utt ordering was not correct, need to fix before submission')
def dvec_compute(generator, ds_eval, device, num_jobs=20, outfolder='./exp/example_dvecs'):
# naively compute the embeddings for each window
# ds_len = len(ds_feats)
all_utts = ds_eval.all_utts
ds_len = len(all_utts)
indices = np.arange(ds_len)
job_split = np.array_split(indices, num_jobs)
generator.eval().to(device)
for job_num, job in enumerate(tqdm(job_split)):
print('Starting job {}'.format(job_num))
ark_scp_output = 'ark:| copy-vector ark:- ark,scp:{0}/xvector.{1}.ark,{0}/xvector.{1}.scp'.format(outfolder,
job_num + 1)
job_utts = all_utts[job]
job_feats = ds_eval.get_batches(job_utts)
job_feats = mtd(job_feats, device)
with torch.no_grad():
job_embeds = torch.cat([generator(x.unsqueeze(0)) for x in tqdm(job_feats)]).cpu().numpy()
with kaldi_io.open_or_fd(ark_scp_output, 'wb') as f:
for xvec, key in zip(job_embeds, job_utts):
kaldi_io.write_vec_flt(f, xvec, key=key)
def evaluate_deepmine_from_xvecs(ds_eval, outfolder='./exp/example_xvecs'):
if not os.path.isfile(os.path.join(outfolder, 'xvector.scp')):
xvec_scps = glob(os.path.join(outfolder, '*.scp'))
assert len(xvec_scps) != 0, 'No xvector scps found'
with open(os.path.join(outfolder, 'xvector.scp'), 'w+') as outfile:
for fname in xvec_scps:
with open(fname) as infile:
for line in infile:
outfile.write(line)
xvec_dict = odict_from_2_col(os.path.join(outfolder, 'xvector.scp'))
answer_col0 = []
answer_col1 = []
answer_col2 = []
for i in tqdm(range(len(ds_eval))):
model, enrol_utts, eval_utts, = ds_eval.get_item_utts(i)
answer_col0.append([model for _ in range(len(eval_utts))])
answer_col1.append(eval_utts)
model_embeds = np.array([read_vec_flt(xvec_dict[u]) for u in enrol_utts])
model_embed = np.mean(normalize(model_embeds, axis=1), axis=0).reshape(1, -1)
eval_embeds = np.array([read_vec_flt(xvec_dict[u]) for u in eval_utts])
eval_embeds = normalize(eval_embeds, axis=1)
scores = cosine_similarity(model_embed, eval_embeds).squeeze(0)
assert len(scores) == len(eval_utts)
answer_col2.append(scores)
answer_col0 = np.concatenate(answer_col0)
answer_col1 = np.concatenate(answer_col1)
answer_col2 = np.concatenate(answer_col2)
print('Writing results to file...')
with open(os.path.join(outfolder, 'answer_full.txt'), 'w+') as fp:
for m, ev, s in tqdm(zip(answer_col0, answer_col1, answer_col2)):
line = '{} {} {}\n'.format(m, ev, s)
fp.write(line)
with open(os.path.join(outfolder, 'answer.txt'), 'w+') as fp:
for s in tqdm(answer_col2):
line = '{}\n'.format(s)
fp.write(line)
if (answer_col0 == np.array(ds_eval.models_eval)).all():
print('model ordering matched')
else:
print('model ordering was not correct, need to fix before submission')
if (answer_col1 == np.array(ds_eval.eval_utts)).all():
print('eval utt ordering matched')
else:
print('eval utt ordering was not correct, need to fix before submission')
def round_sig(x, sig=2):
return round(x, sig - int(floor(log10(abs(x)))) - 1)
def get_eer_metrics(folder):
rpkl_path = os.path.join(folder, 'wrec_results.p')
rpkl = pickle.load(open(rpkl_path, 'rb'))
iterations = list(rpkl.keys())
eers = [rpkl[k]['test_eer'] for k in rpkl]
return iterations, eers, np.min(eers)
def extract_test_embeds(generator, ds_test, device):
assert ds_test.test_mode
with torch.no_grad():
feats, label_dict, all_utts = ds_test.get_test_items()
all_embeds = []
for feat in tqdm(feats):
feat = feat.unsqueeze(0).to(device)
embed = generator(feat)
all_embeds.append(embed.cpu().numpy())
all_embeds = np.vstack(all_embeds)
all_embeds = normalize(all_embeds, axis=1)
all_utts = np.array(all_utts)
return all_utts, all_embeds
if __name__ == "__main__":
args = parse_args()
args = parse_config(args)
uvloop.install()
hf = h5py.File(os.path.join(args.model_dir, 'xvectors.h5'), 'w')
use_cuda = torch.cuda.is_available()
print('=' * 30)
print('USE_CUDA SET TO: {}'.format(use_cuda))
print('CUDA AVAILABLE?: {}'.format(torch.cuda.is_available()))
print('=' * 30)
device = torch.device("cuda" if use_cuda else "cpu")
if args.checkpoint == -1:
g_path = os.path.join(args.model_dir, "final_generator_{}.pt".format(args.num_iterations))
else:
g_path = os.path.join(args.model_dir, "generator_{}.pt".format(args.checkpoint))
if args.model_type == 'XTDNN':
generator = XTDNN(features_per_frame=args.input_dim, embed_features=args.embedding_dim)
if args.model_type == 'ETDNN':
generator = ETDNN(features_per_frame=args.input_dim, embed_features=args.embedding_dim)
if args.model_type == 'FTDNN':
generator = FTDNN(in_dim=args.input_dim, embedding_dim=args.embedding_dim)
if args.best:
iterations, eers, _ = get_eer_metrics(args.model_dir)
best_it = iterations[np.argmin(eers)]
g_path = os.path.join(args.model_dir, "generator_{}.pt".format(best_it))
assert os.path.isfile(g_path), "Couldn't find {}".format(g_path)
ds_train = SpeakerDataset(args.train_data, num_age_bins=args.num_age_bins)
class_enc_dict = ds_train.get_class_encs()
if args.test_data:
ds_test = SpeakerDataset(args.test_data, test_mode=True,
class_enc_dict=class_enc_dict, num_age_bins=args.num_age_bins)
generator.load_state_dict(torch.load(g_path))
model = generator
model.eval().to(device)
utts, embeds = extract_test_embeds(generator, ds_test, device)
hf.create_dataset('embeds', data=embeds)
dt = h5py.string_dtype()
hf.create_dataset('utts', data=np.string_(np.array(utts)), dtype=dt)
hf.close()