forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtriangle.cpp
927 lines (803 loc) · 35.6 KB
/
triangle.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
/*
* Vulkan Example - Basic indexed triangle rendering
*
* Note :
* This is a "pedal to the metal" example to show off how to get Vulkan up an displaying something
* Contrary to the other examples, this one won't make use of helper functions or initializers
* Except in a few cases (swap chain setup e.g.)
*
* Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <vector>
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <vulkan/vulkan.h>
#include "vulkanexamplebase.h"
#define VERTEX_BUFFER_BIND_ID 0
// Set to "true" to enable Vulkan's validation layers
// See vulkandebug.cpp for details
#define ENABLE_VALIDATION false
// Set to "true" to use staging buffers for uploading
// vertex and index data to device local memory
// See "prepareVertices" for details on what's staging
// and on why to use it
#define USE_STAGING true
class VulkanExample : public VulkanExampleBase
{
public:
struct {
VkBuffer buf;
VkDeviceMemory mem;
VkPipelineVertexInputStateCreateInfo vi;
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
} vertices;
struct {
int count;
VkBuffer buf;
VkDeviceMemory mem;
} indices;
struct {
VkBuffer buffer;
VkDeviceMemory memory;
VkDescriptorBufferInfo descriptor;
} uniformDataVS;
struct {
glm::mat4 projectionMatrix;
glm::mat4 modelMatrix;
glm::mat4 viewMatrix;
} uboVS;
struct {
VkPipeline solid;
} pipelines;
VkPipelineLayout pipelineLayout;
VkDescriptorSet descriptorSet;
VkDescriptorSetLayout descriptorSetLayout;
// Synchronization semaphores
struct {
VkSemaphore presentComplete;
VkSemaphore renderComplete;
} semaphores;
VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
{
width = 1280;
height = 720;
zoom = -2.5f;
title = "Vulkan Example - Basic indexed triangle";
// Values not set here are initialized in the base class constructor
}
~VulkanExample()
{
// Clean up used Vulkan resources
// Note : Inherited destructor cleans up resources stored in base class
vkDestroyPipeline(device, pipelines.solid, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vkDestroyBuffer(device, vertices.buf, nullptr);
vkFreeMemory(device, vertices.mem, nullptr);
vkDestroyBuffer(device, indices.buf, nullptr);
vkFreeMemory(device, indices.mem, nullptr);
vkDestroySemaphore(device, semaphores.presentComplete, nullptr);
vkDestroySemaphore(device, semaphores.renderComplete, nullptr);
vkDestroyBuffer(device, uniformDataVS.buffer, nullptr);
vkFreeMemory(device, uniformDataVS.memory, nullptr);
}
// Build separate command buffers for every framebuffer image
// Unlike in OpenGL all rendering commands are recorded once
// into command buffers that are then resubmitted to the queue
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = {};
cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cmdBufInfo.pNext = NULL;
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = {};
renderPassBeginInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
renderPassBeginInfo.pNext = NULL;
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
VkResult err;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
err = vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo);
assert(!err);
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
// Update dynamic viewport state
VkViewport viewport = {};
viewport.height = (float)height;
viewport.width = (float)width;
viewport.minDepth = (float) 0.0f;
viewport.maxDepth = (float) 1.0f;
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
// Update dynamic scissor state
VkRect2D scissor = {};
scissor.extent.width = width;
scissor.extent.height = height;
scissor.offset.x = 0;
scissor.offset.y = 0;
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
// Bind descriptor sets describing shader binding points
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
// Bind the rendering pipeline (including the shaders)
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid);
// Bind triangle vertices
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], VERTEX_BUFFER_BIND_ID, 1, &vertices.buf, offsets);
// Bind triangle indices
vkCmdBindIndexBuffer(drawCmdBuffers[i], indices.buf, 0, VK_INDEX_TYPE_UINT32);
// Draw indexed triangle
vkCmdDrawIndexed(drawCmdBuffers[i], indices.count, 1, 0, 0, 1);
vkCmdEndRenderPass(drawCmdBuffers[i]);
// Add a present memory barrier to the end of the command buffer
// This will transform the frame buffer color attachment to a
// new layout for presenting it to the windowing system integration
VkImageMemoryBarrier prePresentBarrier = {};
prePresentBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
prePresentBarrier.pNext = NULL;
prePresentBarrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
prePresentBarrier.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
prePresentBarrier.oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
prePresentBarrier.newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
prePresentBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
prePresentBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
prePresentBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
prePresentBarrier.image = swapChain.buffers[i].image;
VkImageMemoryBarrier *pMemoryBarrier = &prePresentBarrier;
vkCmdPipelineBarrier(
drawCmdBuffers[i],
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &prePresentBarrier);
err = vkEndCommandBuffer(drawCmdBuffers[i]);
assert(!err);
}
}
void draw()
{
VkResult err;
// Get next image in the swap chain (back/front buffer)
err = swapChain.acquireNextImage(semaphores.presentComplete, ¤tBuffer);
assert(!err);
// Add a post present image memory barrier
// This will transform the frame buffer color attachment back
// to it's initial layout after it has been presented to the
// windowing system
VkImageMemoryBarrier postPresentBarrier = {};
postPresentBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
postPresentBarrier.pNext = NULL;
postPresentBarrier.srcAccessMask = 0;
postPresentBarrier.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
postPresentBarrier.oldLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
postPresentBarrier.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
postPresentBarrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
postPresentBarrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
postPresentBarrier.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 };
postPresentBarrier.image = swapChain.buffers[currentBuffer].image;
// Use dedicated command buffer from example base class for submitting the post present barrier
VkCommandBufferBeginInfo cmdBufInfo = {};
cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
err = vkBeginCommandBuffer(postPresentCmdBuffer, &cmdBufInfo);
assert(!err);
// Put post present barrier into command buffer
vkCmdPipelineBarrier(
postPresentCmdBuffer,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_FLAGS_NONE,
0, nullptr,
0, nullptr,
1, &postPresentBarrier);
err = vkEndCommandBuffer(postPresentCmdBuffer);
assert(!err);
// Submit to the queue
submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &postPresentCmdBuffer;
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
err = vkQueueWaitIdle(queue);
assert(!err);
// The submit infor strcuture contains a list of
// command buffers and semaphores to be submitted to a queue
// If you want to submit multiple command buffers, pass an array
VkPipelineStageFlags pipelineStages = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.pWaitDstStageMask = &pipelineStages;
// The wait semaphore ensures that the image is presented
// before we start submitting command buffers agein
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = &semaphores.presentComplete;
// Submit the currently active command buffer
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
// The signal semaphore is used during queue presentation
// to ensure that the image is not rendered before all
// commands have been submitted
submitInfo.signalSemaphoreCount = 1;
submitInfo.pSignalSemaphores = &semaphores.renderComplete;
// Submit to the graphics queue
err = vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE);
assert(!err);
// Present the current buffer to the swap chain
// We pass the signal semaphore from the submit info
// to ensure that the image is not rendered until
// all commands have been submitted
err = swapChain.queuePresent(queue, currentBuffer, semaphores.renderComplete);
assert(!err);
}
// Create synchronzation semaphores
void prepareSemaphore()
{
VkSemaphoreCreateInfo semaphoreCreateInfo = {};
semaphoreCreateInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
semaphoreCreateInfo.pNext = NULL;
// This semaphore ensures that the image is complete
// before starting to submit again
VkResult err = vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &semaphores.presentComplete);
assert(!err);
// This semaphore ensures that all commands submitted
// have been finished before submitting the image to the queue
err = vkCreateSemaphore(device, &semaphoreCreateInfo, nullptr, &semaphores.renderComplete);
assert(!err);
}
// Setups vertex and index buffers for an indexed triangle,
// uploads them to the VRAM and sets binding points and attribute
// descriptions to match locations inside the shaders
void prepareVertices(bool useStagingBuffers)
{
struct Vertex {
float pos[3];
float col[3];
};
// Setup vertices
std::vector<Vertex> vertexBuffer = {
{ { 1.0f, 1.0f, 0.0f },{ 1.0f, 0.0f, 0.0f } },
{ { -1.0f, 1.0f, 0.0f },{ 0.0f, 1.0f, 0.0f } },
{ { 0.0f, -1.0f, 0.0f },{ 0.0f, 0.0f, 1.0f } }
};
int vertexBufferSize = vertexBuffer.size() * sizeof(Vertex);
// Setup indices
std::vector<uint32_t> indexBuffer = { 0, 1, 2 };
uint32_t indexBufferSize = indexBuffer.size() * sizeof(uint32_t);
indices.count = indexBuffer.size();
VkMemoryAllocateInfo memAlloc = {};
memAlloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
VkMemoryRequirements memReqs;
void *data;
if (useStagingBuffers)
{
// Static data like vertex and index buffer should be stored on the device memory
// for optimal (and fastest) access by the GPU
//
// To achieve this we use so-called "staging buffers" :
// - Create a buffer that's visible to the host (and can be mapped)
// - Copy the data to this buffer
// - Create another buffer that's local on the device (VRAM) with the same size
// - Copy the data from the host to the device using a command buffer
struct StagingBuffer {
VkDeviceMemory memory;
VkBuffer buffer;
};
struct {
StagingBuffer vertices;
StagingBuffer indices;
} stagingBuffers;
// Buffer copies are done on the queue, so we need a command buffer for them
VkCommandBufferAllocateInfo cmdBufInfo = {};
cmdBufInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
cmdBufInfo.commandPool = cmdPool;
cmdBufInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
cmdBufInfo.commandBufferCount = 1;
VkCommandBuffer copyCommandBuffer;
vkTools::checkResult(vkAllocateCommandBuffers(device, &cmdBufInfo, ©CommandBuffer));
// Vertex buffer
VkBufferCreateInfo vertexBufferInfo = {};
vertexBufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
vertexBufferInfo.size = vertexBufferSize;
// Buffer is used as the copy source
vertexBufferInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
// Create a host-visible buffer to copy the vertex data to (staging buffer)
vkTools::checkResult(vkCreateBuffer(device, &vertexBufferInfo, nullptr, &stagingBuffers.vertices.buffer));
vkGetBufferMemoryRequirements(device, stagingBuffers.vertices.buffer, &memReqs);
memAlloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex);
vkTools::checkResult(vkAllocateMemory(device, &memAlloc, nullptr, &stagingBuffers.vertices.memory));
// Map and copy
vkTools::checkResult(vkMapMemory(device, stagingBuffers.vertices.memory, 0, memAlloc.allocationSize, 0, &data));
memcpy(data, vertexBuffer.data(), vertexBufferSize);
vkUnmapMemory(device, stagingBuffers.vertices.memory);
vkTools::checkResult(vkBindBufferMemory(device, stagingBuffers.vertices.buffer, stagingBuffers.vertices.memory, 0));
// Create the destination buffer with device only visibility
// Buffer will be used as a vertex buffer and is the copy destination
vertexBufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
vkTools::checkResult(vkCreateBuffer(device, &vertexBufferInfo, nullptr, &vertices.buf));
vkGetBufferMemoryRequirements(device, vertices.buf, &memReqs);
memAlloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAlloc.memoryTypeIndex);
vkTools::checkResult(vkAllocateMemory(device, &memAlloc, nullptr, &vertices.mem));
vkTools::checkResult(vkBindBufferMemory(device, vertices.buf, vertices.mem, 0));
// Index buffer
// todo : comment
VkBufferCreateInfo indexbufferInfo = {};
indexbufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
indexbufferInfo.size = indexBufferSize;
indexbufferInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
// Copy index data to a buffer visible to the host (staging buffer)
vkTools::checkResult(vkCreateBuffer(device, &indexbufferInfo, nullptr, &stagingBuffers.indices.buffer));
vkGetBufferMemoryRequirements(device, stagingBuffers.indices.buffer, &memReqs);
memAlloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex);
vkTools::checkResult(vkAllocateMemory(device, &memAlloc, nullptr, &stagingBuffers.indices.memory));
vkTools::checkResult(vkMapMemory(device, stagingBuffers.indices.memory, 0, indexBufferSize, 0, &data));
memcpy(data, indexBuffer.data(), indexBufferSize);
vkUnmapMemory(device, stagingBuffers.indices.memory);
vkTools::checkResult(vkBindBufferMemory(device, stagingBuffers.indices.buffer, stagingBuffers.indices.memory, 0));
// Create destination buffer with device only visibility
indexbufferInfo.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
vkTools::checkResult(vkCreateBuffer(device, &indexbufferInfo, nullptr, &indices.buf));
vkGetBufferMemoryRequirements(device, indices.buf, &memReqs);
memAlloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, &memAlloc.memoryTypeIndex);
vkTools::checkResult(vkAllocateMemory(device, &memAlloc, nullptr, &indices.mem));
vkTools::checkResult(vkBindBufferMemory(device, indices.buf, indices.mem, 0));
indices.count = indexBuffer.size();
VkCommandBufferBeginInfo cmdBufferBeginInfo = {};
cmdBufferBeginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
cmdBufferBeginInfo.pNext = NULL;
VkBufferCopy copyRegion = {};
// Put buffer region copies into command buffer
// Note that the staging buffer must not be deleted before the copies
// have been submitted and executed
vkTools::checkResult(vkBeginCommandBuffer(copyCommandBuffer, &cmdBufferBeginInfo));
// Vertex buffer
copyRegion.size = vertexBufferSize;
vkCmdCopyBuffer(
copyCommandBuffer,
stagingBuffers.vertices.buffer,
vertices.buf,
1,
©Region);
// Index buffer
copyRegion.size = indexBufferSize;
vkCmdCopyBuffer(
copyCommandBuffer,
stagingBuffers.indices.buffer,
indices.buf,
1,
©Region);
vkTools::checkResult(vkEndCommandBuffer(copyCommandBuffer));
// Submit copies to the queue
VkSubmitInfo copySubmitInfo = {};
copySubmitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
copySubmitInfo.commandBufferCount = 1;
copySubmitInfo.pCommandBuffers = ©CommandBuffer;
vkTools::checkResult(vkQueueSubmit(queue, 1, ©SubmitInfo, VK_NULL_HANDLE));
vkTools::checkResult(vkQueueWaitIdle(queue));
// todo : sync necessary (fence, semaphore?)
// Destroy staging buffers
vkDestroyBuffer(device, stagingBuffers.vertices.buffer, nullptr);
vkFreeMemory(device, stagingBuffers.vertices.memory, nullptr);
vkDestroyBuffer(device, stagingBuffers.indices.buffer, nullptr);
vkFreeMemory(device, stagingBuffers.indices.memory, nullptr);
}
else
{
// Don't use staging
// Create host-visible buffers only and use these for rendering
// This is not advised for real world applications and will
// result in lower performances
// Vertex buffer
VkBufferCreateInfo vertexBufferInfo = {};
vertexBufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
vertexBufferInfo.size = vertexBufferSize;
vertexBufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
// Copy vertex data to a buffer visible to the host
vkTools::checkResult(vkCreateBuffer(device, &vertexBufferInfo, nullptr, &vertices.buf));
vkGetBufferMemoryRequirements(device, vertices.buf, &memReqs);
memAlloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex);
vkTools::checkResult(vkAllocateMemory(device, &memAlloc, nullptr, &vertices.mem));
vkTools::checkResult(vkMapMemory(device, vertices.mem, 0, memAlloc.allocationSize, 0, &data));
memcpy(data, vertexBuffer.data(), vertexBufferSize);
vkUnmapMemory(device, vertices.mem);
vkTools::checkResult(vkBindBufferMemory(device, vertices.buf, vertices.mem, 0));
// Index buffer
VkBufferCreateInfo indexbufferInfo = {};
indexbufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
indexbufferInfo.size = indexBufferSize;
indexbufferInfo.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT;
// Copy index data to a buffer visible to the host
memset(&indices, 0, sizeof(indices));
vkTools::checkResult(vkCreateBuffer(device, &indexbufferInfo, nullptr, &indices.buf));
vkGetBufferMemoryRequirements(device, indices.buf, &memReqs);
memAlloc.allocationSize = memReqs.size;
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &memAlloc.memoryTypeIndex);
vkTools::checkResult(vkAllocateMemory(device, &memAlloc, nullptr, &indices.mem));
vkTools::checkResult(vkMapMemory(device, indices.mem, 0, indexBufferSize, 0, &data));
memcpy(data, indexBuffer.data(), indexBufferSize);
vkUnmapMemory(device, indices.mem);
vkTools::checkResult(vkBindBufferMemory(device, indices.buf, indices.mem, 0));
indices.count = indexBuffer.size();
}
// Binding description
vertices.bindingDescriptions.resize(1);
vertices.bindingDescriptions[0].binding = VERTEX_BUFFER_BIND_ID;
vertices.bindingDescriptions[0].stride = sizeof(Vertex);
vertices.bindingDescriptions[0].inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
// Attribute descriptions
// Describes memory layout and shader attribute locations
vertices.attributeDescriptions.resize(2);
// Location 0 : Position
vertices.attributeDescriptions[0].binding = VERTEX_BUFFER_BIND_ID;
vertices.attributeDescriptions[0].location = 0;
vertices.attributeDescriptions[0].format = VK_FORMAT_R32G32B32_SFLOAT;
vertices.attributeDescriptions[0].offset = 0;
vertices.attributeDescriptions[0].binding = 0;
// Location 1 : Color
vertices.attributeDescriptions[1].binding = VERTEX_BUFFER_BIND_ID;
vertices.attributeDescriptions[1].location = 1;
vertices.attributeDescriptions[1].format = VK_FORMAT_R32G32B32_SFLOAT;
vertices.attributeDescriptions[1].offset = sizeof(float) * 3;
vertices.attributeDescriptions[1].binding = 0;
// Assign to vertex buffer
vertices.vi.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertices.vi.pNext = NULL;
vertices.vi.vertexBindingDescriptionCount = vertices.bindingDescriptions.size();
vertices.vi.pVertexBindingDescriptions = vertices.bindingDescriptions.data();
vertices.vi.vertexAttributeDescriptionCount = vertices.attributeDescriptions.size();
vertices.vi.pVertexAttributeDescriptions = vertices.attributeDescriptions.data();
}
void setupDescriptorPool()
{
// We need to tell the API the number of max. requested descriptors per type
VkDescriptorPoolSize typeCounts[1];
// This example only uses one descriptor type (uniform buffer) and only
// requests one descriptor of this type
typeCounts[0].type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
typeCounts[0].descriptorCount = 1;
// For additional types you need to add new entries in the type count list
// E.g. for two combined image samplers :
// typeCounts[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
// typeCounts[1].descriptorCount = 2;
// Create the global descriptor pool
// All descriptors used in this example are allocated from this pool
VkDescriptorPoolCreateInfo descriptorPoolInfo = {};
descriptorPoolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
descriptorPoolInfo.pNext = NULL;
descriptorPoolInfo.poolSizeCount = 1;
descriptorPoolInfo.pPoolSizes = typeCounts;
// Set the max. number of sets that can be requested
// Requesting descriptors beyond maxSets will result in an error
descriptorPoolInfo.maxSets = 1;
VkResult vkRes = vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool);
assert(!vkRes);
}
void setupDescriptorSetLayout()
{
// Setup layout of descriptors used in this example
// Basically connects the different shader stages to descriptors
// for binding uniform buffers, image samplers, etc.
// So every shader binding should map to one descriptor set layout
// binding
// Binding 0 : Uniform buffer (Vertex shader)
VkDescriptorSetLayoutBinding layoutBinding = {};
layoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
layoutBinding.descriptorCount = 1;
layoutBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
layoutBinding.pImmutableSamplers = NULL;
VkDescriptorSetLayoutCreateInfo descriptorLayout = {};
descriptorLayout.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
descriptorLayout.pNext = NULL;
descriptorLayout.bindingCount = 1;
descriptorLayout.pBindings = &layoutBinding;
VkResult err = vkCreateDescriptorSetLayout(device, &descriptorLayout, NULL, &descriptorSetLayout);
assert(!err);
// Create the pipeline layout that is used to generate the rendering pipelines that
// are based on this descriptor set layout
// In a more complex scenario you would have different pipeline layouts for different
// descriptor set layouts that could be reused
VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = {};
pPipelineLayoutCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pPipelineLayoutCreateInfo.pNext = NULL;
pPipelineLayoutCreateInfo.setLayoutCount = 1;
pPipelineLayoutCreateInfo.pSetLayouts = &descriptorSetLayout;
err = vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout);
assert(!err);
}
void setupDescriptorSet()
{
// Update descriptor sets determining the shader binding points
// For every binding point used in a shader there needs to be one
// descriptor set matching that binding point
VkWriteDescriptorSet writeDescriptorSet = {};
VkDescriptorSetAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
allocInfo.descriptorPool = descriptorPool;
allocInfo.descriptorSetCount = 1;
allocInfo.pSetLayouts = &descriptorSetLayout;
VkResult vkRes = vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet);
assert(!vkRes);
// Binding 0 : Uniform buffer
writeDescriptorSet.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writeDescriptorSet.dstSet = descriptorSet;
writeDescriptorSet.descriptorCount = 1;
writeDescriptorSet.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
writeDescriptorSet.pBufferInfo = &uniformDataVS.descriptor;
// Binds this uniform buffer to binding point 0
writeDescriptorSet.dstBinding = 0;
vkUpdateDescriptorSets(device, 1, &writeDescriptorSet, 0, NULL);
}
void preparePipelines()
{
// Create our rendering pipeline used in this example
// Vulkan uses the concept of rendering pipelines to encapsulate
// fixed states
// This replaces OpenGL's huge (and cumbersome) state machine
// A pipeline is then stored and hashed on the GPU making
// pipeline changes much faster than having to set dozens of
// states
// In a real world application you'd have dozens of pipelines
// for every shader set used in a scene
// Note that there are a few states that are not stored with
// the pipeline. These are called dynamic states and the
// pipeline only stores that they are used with this pipeline,
// but not their states
VkGraphicsPipelineCreateInfo pipelineCreateInfo = {};
VkResult err;
pipelineCreateInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
// The layout used for this pipeline
pipelineCreateInfo.layout = pipelineLayout;
// Renderpass this pipeline is attached to
pipelineCreateInfo.renderPass = renderPass;
// Vertex input state
// Describes the topoloy used with this pipeline
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = {};
inputAssemblyState.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
// This pipeline renders vertex data as triangle lists
inputAssemblyState.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
// Rasterization state
VkPipelineRasterizationStateCreateInfo rasterizationState = {};
rasterizationState.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
// Solid polygon mode
rasterizationState.polygonMode = VK_POLYGON_MODE_FILL;
// No culling
rasterizationState.cullMode = VK_CULL_MODE_NONE;
rasterizationState.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;
rasterizationState.depthClampEnable = VK_FALSE;
rasterizationState.rasterizerDiscardEnable = VK_FALSE;
rasterizationState.depthBiasEnable = VK_FALSE;
// Color blend state
// Describes blend modes and color masks
VkPipelineColorBlendStateCreateInfo colorBlendState = {};
colorBlendState.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
// One blend attachment state
// Blending is not used in this example
VkPipelineColorBlendAttachmentState blendAttachmentState[1] = {};
blendAttachmentState[0].colorWriteMask = 0xf;
blendAttachmentState[0].blendEnable = VK_FALSE;
colorBlendState.attachmentCount = 1;
colorBlendState.pAttachments = blendAttachmentState;
// Viewport state
VkPipelineViewportStateCreateInfo viewportState = {};
viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
// One viewport
viewportState.viewportCount = 1;
// One scissor rectangle
viewportState.scissorCount = 1;
// Enable dynamic states
// Describes the dynamic states to be used with this pipeline
// Dynamic states can be set even after the pipeline has been created
// So there is no need to create new pipelines just for changing
// a viewport's dimensions or a scissor box
VkPipelineDynamicStateCreateInfo dynamicState = {};
// The dynamic state properties themselves are stored in the command buffer
std::vector<VkDynamicState> dynamicStateEnables;
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_VIEWPORT);
dynamicStateEnables.push_back(VK_DYNAMIC_STATE_SCISSOR);
dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamicState.pDynamicStates = dynamicStateEnables.data();
dynamicState.dynamicStateCount = dynamicStateEnables.size();
// Depth and stencil state
// Describes depth and stenctil test and compare ops
VkPipelineDepthStencilStateCreateInfo depthStencilState = {};
// Basic depth compare setup with depth writes and depth test enabled
// No stencil used
depthStencilState.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
depthStencilState.depthTestEnable = VK_TRUE;
depthStencilState.depthWriteEnable = VK_TRUE;
depthStencilState.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL;
depthStencilState.depthBoundsTestEnable = VK_FALSE;
depthStencilState.back.failOp = VK_STENCIL_OP_KEEP;
depthStencilState.back.passOp = VK_STENCIL_OP_KEEP;
depthStencilState.back.compareOp = VK_COMPARE_OP_ALWAYS;
depthStencilState.stencilTestEnable = VK_FALSE;
depthStencilState.front = depthStencilState.back;
// Multi sampling state
VkPipelineMultisampleStateCreateInfo multisampleState = {};
multisampleState.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
multisampleState.pSampleMask = NULL;
// No multi sampling used in this example
multisampleState.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
// Load shaders
// Shaders are loaded from the SPIR-V format, which can be generated from glsl
std::array<VkPipelineShaderStageCreateInfo,2> shaderStages;
shaderStages[0] = loadShader(getAssetPath() + "shaders/triangle.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getAssetPath() + "shaders/triangle.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
// Assign states
// Assign pipeline state create information
pipelineCreateInfo.stageCount = shaderStages.size();
pipelineCreateInfo.pStages = shaderStages.data();
pipelineCreateInfo.pVertexInputState = &vertices.vi;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.renderPass = renderPass;
pipelineCreateInfo.pDynamicState = &dynamicState;
// Create rendering pipeline
err = vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.solid);
assert(!err);
}
void prepareUniformBuffers()
{
// Prepare and initialize uniform buffer containing shader uniforms
VkMemoryRequirements memReqs;
// Vertex shader uniform buffer block
VkBufferCreateInfo bufferInfo = {};
VkMemoryAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
allocInfo.pNext = NULL;
allocInfo.allocationSize = 0;
allocInfo.memoryTypeIndex = 0;
VkResult err;
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferInfo.size = sizeof(uboVS);
bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
// Create a new buffer
err = vkCreateBuffer(device, &bufferInfo, nullptr, &uniformDataVS.buffer);
assert(!err);
// Get memory requirements including size, alignment and memory type
vkGetBufferMemoryRequirements(device, uniformDataVS.buffer, &memReqs);
allocInfo.allocationSize = memReqs.size;
// Gets the appropriate memory type for this type of buffer allocation
// Only memory types that are visible to the host
getMemoryType(memReqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &allocInfo.memoryTypeIndex);
// Allocate memory for the uniform buffer
err = vkAllocateMemory(device, &allocInfo, nullptr, &(uniformDataVS.memory));
assert(!err);
// Bind memory to buffer
err = vkBindBufferMemory(device, uniformDataVS.buffer, uniformDataVS.memory, 0);
assert(!err);
// Store information in the uniform's descriptor
uniformDataVS.descriptor.buffer = uniformDataVS.buffer;
uniformDataVS.descriptor.offset = 0;
uniformDataVS.descriptor.range = sizeof(uboVS);
updateUniformBuffers();
}
void updateUniformBuffers()
{
// Update matrices
uboVS.projectionMatrix = glm::perspective(glm::radians(60.0f), (float)width / (float)height, 0.1f, 256.0f);
uboVS.viewMatrix = glm::translate(glm::mat4(), glm::vec3(0.0f, 0.0f, zoom));
uboVS.modelMatrix = glm::mat4();
uboVS.modelMatrix = glm::rotate(uboVS.modelMatrix, glm::radians(rotation.x), glm::vec3(1.0f, 0.0f, 0.0f));
uboVS.modelMatrix = glm::rotate(uboVS.modelMatrix, glm::radians(rotation.y), glm::vec3(0.0f, 1.0f, 0.0f));
uboVS.modelMatrix = glm::rotate(uboVS.modelMatrix, glm::radians(rotation.z), glm::vec3(0.0f, 0.0f, 1.0f));
// Map uniform buffer and update it
uint8_t *pData;
VkResult err = vkMapMemory(device, uniformDataVS.memory, 0, sizeof(uboVS), 0, (void **)&pData);
assert(!err);
memcpy(pData, &uboVS, sizeof(uboVS));
vkUnmapMemory(device, uniformDataVS.memory);
assert(!err);
}
void prepare()
{
VulkanExampleBase::prepare();
prepareSemaphore();
prepareVertices(USE_STAGING);
prepareUniformBuffers();
setupDescriptorSetLayout();
preparePipelines();
setupDescriptorPool();
setupDescriptorSet();
buildCommandBuffers();
prepared = true;
}
virtual void render()
{
if (!prepared)
return;
vkDeviceWaitIdle(device);
draw();
vkDeviceWaitIdle(device);
}
virtual void viewChanged()
{
// This function is called by the base example class
// each time the view is changed by user input
updateUniformBuffers();
}
};
VulkanExample *vulkanExample;
#if defined(_WIN32)
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
if (vulkanExample != NULL)
{
vulkanExample->handleMessages(hWnd, uMsg, wParam, lParam);
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}
#elif defined(__linux__) && !defined(__ANDROID__)
static void handleEvent(const xcb_generic_event_t *event)
{
if (vulkanExample != NULL)
{
vulkanExample->handleEvent(event);
}
}
#endif
// Main entry point
#if defined(_WIN32)
// Windows entry point
int APIENTRY WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow)
#elif defined(__ANDROID__)
// Android entry point
void android_main(android_app* state)
#elif defined(__linux__)
// Linux entry point
int main(const int argc, const char *argv[])
#endif
{
#if defined(__ANDROID__)
// Removing this may cause the compiler to omit the main entry point
// which would make the application crash at start
app_dummy();
#endif
vulkanExample = new VulkanExample();
#if defined(_WIN32)
vulkanExample->setupWindow(hInstance, WndProc);
#elif defined(__ANDROID__)
// Attach vulkan example to global android application state
state->userData = vulkanExample;
state->onAppCmd = VulkanExample::handleAppCommand;
state->onInputEvent = VulkanExample::handleAppInput;
vulkanExample->androidApp = state;
#elif defined(__linux__)
vulkanExample->setupWindow();
#endif
#if !defined(__ANDROID__)
vulkanExample->initSwapchain();
vulkanExample->prepare();
#endif
vulkanExample->renderLoop();
delete(vulkanExample);
#if !defined(__ANDROID__)
return 0;
#endif
}