forked from libtom/libtommath
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbn_mp_factorial.c
410 lines (389 loc) · 8.35 KB
/
bn_mp_factorial.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
#include <tommath.h>
#ifdef BN_MP_FACTORIAL_C
static long highbit(unsigned long n)
{
long r = 0;
while (n >>= 1) {
r++;
}
return r;
}
unsigned long mp_prime_divisors(unsigned long n, unsigned long p)
{
unsigned long q, m;
q = n;
m = 0LU;
if (p > n)
return 0LU;
if (p > n / 2LU)
return 1LU;
while (q >= p) {
q = q / p;
m += q;
}
return m;
}
static int primorial__lowlevel(unsigned long *array, unsigned long n,
mp_int * result)
{
unsigned long int i, first_half, second_half;
mp_int tmp;
int e;
if (n == 0) {
mp_set(result, 1);
return MP_OKAY;
}
// Do the rest linearily. Faster for primorials at least, but YMMV
if (n <= 64) {
mp_set(result, array[0]);
for (i = 1; i < n; i++)
mp_mul_d(result, array[i], result);
return MP_OKAY;
}
first_half = n / 2;
second_half = n - first_half;
if ((e = primorial__lowlevel(array, second_half, result)) != MP_OKAY) {
return e;
}
if ((e = mp_init(&tmp)) != MP_OKAY) {
return e;
}
if ((e =
primorial__lowlevel(array + second_half, first_half, &tmp)) != MP_OKAY) {
mp_clear(&tmp);
return e;
}
if ((e = mp_mul(result, &tmp, result)) != MP_OKAY) {
mp_clear(&tmp);
return e;
}
mp_clear(&tmp);
return MP_OKAY;
}
/*
static void print_q(unsigned long *q,unsigned long n)
{
unsigned long i;
printf("%lu - ",n);
for (i=0; i<n; i++)
printf("%lu *",q[i]);
puts("");
}
*/
# define MP_FACTORIAL_BORW_LOOP_CUTOFF 500000
# define MP_FACTORIAL_BORW_PRIMORIAL_CUTOFF 200000
static int factorial_borwein(unsigned long n, mp_int * result)
{
unsigned long *p_list, *arr;
unsigned long *exp_list;
unsigned long p, i, j, cut;
long bit;
int shift, e;
mp_int temp;
unsigned long r = 0;
p_list = mp_fill_prime_list(3, n + 1, &r);
exp_list = malloc(sizeof(unsigned long) * (r + 1));
if (exp_list == NULL) {
return MP_MEM;
}
if ((e = mp_set_int(result, 1)) != MP_OKAY) {
return e;
}
shift = (int) mp_prime_divisors(n, 2LU);
cut = n / 2;
for (p = 0; p < r; p++) {
if (p_list[p] > cut)
break;
exp_list[p] = mp_prime_divisors(n, p_list[p]);
}
if ((e = mp_init(&temp)) != MP_OKAY) {
return e;
}
bit = (int) highbit(exp_list[0]);
if (n < MP_FACTORIAL_BORW_LOOP_CUTOFF) {
for (; bit >= 0; bit--) {
if ((e = mp_sqr(result, result)) != MP_OKAY) {
mp_clear(&temp);
return e;
}
for (i = 0; i < p; i++) {
if ((exp_list[i] & (1 << bit)) != 0) {
if ((e = mp_mul_d(result, (mp_digit) p_list[i], result)) != MP_OKAY) {
mp_clear(&temp);
return e;
}
}
}
}
} else {
for (; bit >= 0; bit--) {
arr = malloc(sizeof(unsigned long) * (r + 1));
if (arr == NULL) {
mp_clear(&temp);
return MP_MEM;
}
if ((e = mp_sqr(result, result)) != MP_OKAY) {
mp_clear(&temp);
free(arr);
return e;
}
if ((e = mp_set_int(&temp, 1)) != MP_OKAY) {
mp_clear(&temp);
free(arr);
return e;
}
for (i = 0, j = 0; i < p; i++) {
if ((exp_list[i] & (1 << bit)) != 0) {
/*
* if ((e = mp_mul_d(&temp, (mp_digit) p_list[i], &temp)) != MP_OKAY) {
* return e;
* }
*/
arr[j++] = p_list[i];
}
}
primorial__lowlevel(arr, j, &temp);
if ((e = mp_mul(&temp, result, result)) != MP_OKAY) {
mp_clear(&temp);
free(arr);
return e;
}
free(arr);
}
}
if (n < MP_FACTORIAL_BORW_PRIMORIAL_CUTOFF) {
for (; p < r; p++) {
if ((e = mp_mul_d(result, (mp_digit) p_list[p], result)) != MP_OKAY) {
mp_clear(&temp);
return e;
}
}
} else {
if ((e = mp_primorial(cut, n, &temp)) != MP_OKAY) {
mp_clear(&temp);
return e;
}
if ((e = mp_mul(result, &temp, result)) != MP_OKAY) {
mp_clear(&temp);
return e;
}
}
if ((e = mp_mul_2d(result, shift, result)) != MP_OKAY) {
mp_clear(&temp);
return e;
}
mp_clear(&temp);
return MP_OKAY;
}
static int fbinsplit2b(unsigned long n, unsigned long m, mp_int * temp)
{
mp_int t1;
int e;
unsigned long k;
if (m <= (n + 1)) {
if ((e = mp_set_int(temp, n)) != MP_OKAY) {
return e;
}
return MP_OKAY;
}
if (m == (n + 2)) {
if ((e = mp_set_int(temp, n * m)) != MP_OKAY) {
return e;
}
return MP_OKAY;
}
k = (n + m) / 2;
if ((k & 1) != 1)
k = k - 1;
if ((e = mp_init(&t1)) != MP_OKAY) {
return e;
}
if ((e = fbinsplit2b(n, k, temp)) != MP_OKAY) {
mp_clear(&t1);
return e;
}
if ((e = mp_copy(temp, &t1)) != MP_OKAY) {
mp_clear(&t1);
return e;
}
if ((e = fbinsplit2b(k + 2, m, temp)) != MP_OKAY) {
mp_clear(&t1);
return e;
}
if ((e = mp_mul(&t1, temp, temp)) != MP_OKAY) {
mp_clear(&t1);
return e;
}
mp_clear(&t1);
return MP_OKAY;
}
static int fbinsplit2a(unsigned long n, mp_int * p, mp_int * r)
{
mp_int temp;
int e;
if (n <= 2)
return MP_OKAY;
if ((e = fbinsplit2a(n / 2, p, r)) != MP_OKAY) {
return e;
}
if ((e = mp_init(&temp)) != MP_OKAY) {
mp_clear(&temp);
return e;
}
if ((e =
fbinsplit2b(n / 2 + 1 + ((n / 2) & 1), n - 1 + (n & 1),
&temp)) != MP_OKAY) {
mp_clear(&temp);
return e;
}
if ((e = mp_mul(p, &temp, p)) != MP_OKAY) {
mp_clear(&temp);
return e;
}
mp_clear(&temp);
if ((e = mp_mul(r, p, r)) != MP_OKAY) {
return e;
}
return MP_OKAY;
}
static int factorial_binsplit(unsigned long n, mp_int * result)
{
mp_int p, r;
int e;
if ((e = mp_init_multi(&p, &r, NULL)) != MP_OKAY) {
return e;
}
if ((e = mp_set_int(&p, 1)) != MP_OKAY) {
mp_clear_multi(&p, &r, NULL);
return e;
}
if ((e = mp_set_int(&r, 1)) != MP_OKAY) {
mp_clear_multi(&p, &r, NULL);
return e;
}
if ((e = fbinsplit2a(n, &p, &r)) != MP_OKAY) {
mp_clear_multi(&p, &r, NULL);
return e;
}
if ((e = mp_mul_2d(&r, (int) mp_prime_divisors(n, 2LU), result)) != MP_OKAY) {
mp_clear_multi(&p, &r, NULL);
return e;
}
mp_clear_multi(&p, &r, NULL);
return MP_OKAY;
}
# ifndef MP_DIGIT_SIZE
# define MP_DIGIT_SIZE (1L<<DIGIT_BIT)
# endif
static int factorial_naive(unsigned long n, mp_int * result)
{
unsigned long m, l = 1, k = 0;
int e;
if ((e = mp_set_int(result, 1)) != MP_OKAY) {
return e;
}
for (; n > 1; n--) {
for (m = n; !(m & 0x1); m >>= 1)
k++;
if (l <= MP_DIGIT_SIZE / m) {
l *= m;
continue;
}
if ((e = mp_mul_d(result, l, result)) != MP_OKAY) {
return e;
}
l = m;
}
if (l > 1) {
if ((e = mp_mul_d(result, l, result)) != MP_OKAY) {
return e;
}
}
if ((e = mp_mul_2d(result, k, result)) != MP_OKAY) {
return e;
}
return MP_OKAY;
}
int mp_factorial(unsigned long n, mp_int * result)
{
switch (n) {
case 0:
case 1:
return mp_set_int(result, 1);
break;
case 2:
return mp_set_int(result, 2);
break;
case 3:
return mp_set_int(result, 6);
break;
case 4:
return mp_set_int(result, 24);
break;
case 5:
return mp_set_int(result, 120);
break;
# if (defined MP_16BIT) || (defined MP_28BIT)\
|| (defined MP_31BIT) || (defined MP_64BIT)
case 6:
return mp_set_int(result, 720);
break;
case 7:
return mp_set_int(result, 5040);
break;
case 8:
return mp_set_int(result, 40320);
break;
# endif
# if (defined MP_28BIT)\
|| (defined MP_31BIT)|| (defined MP_64BIT)
case 9:
return mp_set_int(result, 362880LU);
break;
case 10:
return mp_set_int(result, 3628800LU);
break;
case 11:
return mp_set_int(result, 39916800LU);
break;
# endif
# if (defined MP_31BIT)|| (defined MP_64BIT)
case 12:
return mp_set_int(result, 479001600LLU);
break;
# endif
# if (defined MP_64BIT)
case 13:
return mp_set_int(result, 6227020800LLU);
break;
case 14:
return mp_set_int(result, 87178291200LLU);
break;
case 15:
return mp_set_int(result, 1307674368000LLU);
break;
case 16:
return mp_set_int(result, 20922789888000LLU);
break;
case 17:
return mp_set_int(result, 355687428096000LLU);
break;
case 18:
return mp_set_int(result, 6402373705728000LLU);
break;
case 19:
return mp_set_int(result, 121645100408832000LLU);
break;
# endif
default:
break;
}
//return factorial_borwein(n, result);
if (n < 1700) {
return factorial_naive(n, result);
} else if (n < 65536) {
return factorial_binsplit(n, result);
}
return factorial_borwein(n, result);
}
#endif