-
Notifications
You must be signed in to change notification settings - Fork 65
/
Copy pathanalysis.py
57 lines (47 loc) · 1.29 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from aip import AipNlp
import pandas as pd
import numpy as np
import time
# 此处输入baiduAIid
APP_ID = ''
API_KEY = ''
SECRET_KEY = ''
client = AipNlp(APP_ID, API_KEY, SECRET_KEY)
def isPostive(text):
try:
if client.sentimentClassify(text)['items'][0]['positive_prob']>0.5:
return "积极"
else:
return "消极"
except:
return "积极"
# 读取文件,注意修改文件路径
file_path = 'mlxg.xls'
data = pd.read_excel(file_path,encoding='utf-8')
moods = []
count = 1
for i in data['微博内容']:
moods.append(isPostive(i))
count+=1
print("目前分析到:"+count)
data['情感倾向'] = pd.Series(moods)
# 此处为覆盖保存
data.to_excel(file_path)
print("分析完成,已保存")
'''
# 此处为简单分类:P
def fenlei(text):
xf = ['抽奖',"抽一个","抽一位","买","通贩"]
cz = ["画","实物","返图","合集","摸鱼","漫","自制","攻略","授权","草稿","绘"]
gj = ["hz","狗粉丝","狗女儿"]
for j in cz:
if j in text:
return "创作"
for i in xf:
if i in text:
return "消费"
for k in gj:
if k in text:
return "攻击"
return "其他"
'''