-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcustom_datasets.py
175 lines (160 loc) · 9.38 KB
/
custom_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os.path as osp
import mmengine.fileio as fileio
from mmseg.registry import DATASETS
from mmseg.datasets import BaseSegDataset
@DATASETS.register_module()
class PascalVOC20Dataset(BaseSegDataset):
"""Pascal VOC dataset.
Args:
split (str): Split txt file for Pascal VOC.
"""
METAINFO = dict(
classes=('aeroplane', 'bicycle', 'bird', 'boat',
'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable',
'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep',
'sofa', 'train', 'tvmonitor'),
palette=[[128, 0, 0], [0, 128, 0], [0, 0, 192],
[128, 128, 0], [128, 0, 128], [0, 128, 128], [192, 128, 64],
[64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0],
[64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128],
[0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0],
[0, 64, 128]])
def __init__(self,
ann_file,
img_suffix='.jpg',
seg_map_suffix='.png',
reduce_zero_label=True,
**kwargs) -> None:
super().__init__(
img_suffix=img_suffix,
seg_map_suffix=seg_map_suffix,
reduce_zero_label=reduce_zero_label,
ann_file=ann_file,
**kwargs)
assert fileio.exists(self.data_prefix['img_path'],
self.backend_args) and osp.isfile(self.ann_file)
@DATASETS.register_module()
class COCOObjectDataset(BaseSegDataset):
"""
Implementation borrowed from TCL (https://github.com/kakaobrain/tcl) and GroupViT (https://github.com/NVlabs/GroupViT)
COCO-Object dataset.
1 bg class + first 80 classes from the COCO-Stuff dataset.
"""
METAINFO = dict(
classes = ('background', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat',
'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse',
'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',
'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove',
'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut',
'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse',
'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book',
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'),
palette = [[0, 0, 0], [0, 192, 64], [0, 192, 64], [0, 64, 96], [128, 192, 192], [0, 64, 64], [0, 192, 224],
[0, 192, 192], [128, 192, 64], [0, 192, 96], [128, 192, 64], [128, 32, 192], [0, 0, 224], [0, 0, 64],
[0, 160, 192], [128, 0, 96], [128, 0, 192], [0, 32, 192], [128, 128, 224], [0, 0, 192], [128, 160, 192],
[128, 128, 0], [128, 0, 32], [128, 32, 0], [128, 0, 128], [64, 128, 32], [0, 160, 0], [0, 0, 0],
[192, 128, 160], [0, 32, 0], [0, 128, 128], [64, 128, 160], [128, 160, 0], [0, 128, 0], [192, 128, 32],
[128, 96, 128], [0, 0, 128], [64, 0, 32], [0, 224, 128], [128, 0, 0], [192, 0, 160], [0, 96, 128],
[128, 128, 128], [64, 0, 160], [128, 224, 128], [128, 128, 64], [192, 0, 32],
[128, 96, 0], [128, 0, 192], [0, 128, 32], [64, 224, 0], [0, 0, 64], [128, 128, 160], [64, 96, 0],
[0, 128, 192], [0, 128, 160], [192, 224, 0], [0, 128, 64], [128, 128, 32], [192, 32, 128], [0, 64, 192],
[0, 0, 32], [64, 160, 128], [128, 64, 64], [128, 0, 160], [64, 32, 128], [128, 192, 192], [0, 0, 160],
[192, 160, 128], [128, 192, 0], [128, 0, 96], [192, 32, 0], [128, 64, 128], [64, 128, 96], [64, 160, 0],
[0, 64, 0], [192, 128, 224], [64, 32, 0], [0, 192, 128], [64, 128, 224], [192, 160, 0]])
def __init__(self, **kwargs):
super(COCOObjectDataset, self).__init__(img_suffix='.jpg', seg_map_suffix='_instanceTrainIds.png', **kwargs)
@DATASETS.register_module()
class PascalContext60Dataset(BaseSegDataset):
METAINFO = dict(
classes=('background', 'aeroplane', 'bag', 'bed', 'bedclothes',
'bench', 'bicycle', 'bird', 'boat', 'book', 'bottle',
'building', 'bus', 'cabinet', 'car', 'cat', 'ceiling',
'chair', 'cloth', 'computer', 'cow', 'cup', 'curtain', 'dog',
'door', 'fence', 'floor', 'flower', 'food', 'grass', 'ground',
'horse', 'keyboard', 'light', 'motorbike', 'mountain',
'mouse', 'person', 'plate', 'platform', 'pottedplant', 'road',
'rock', 'sheep', 'shelves', 'sidewalk', 'sign', 'sky', 'snow',
'sofa', 'table', 'track', 'train', 'tree', 'truck',
'tvmonitor', 'wall', 'water', 'window', 'wood'),
palette=[[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255]])
def __init__(self,
ann_file: str,
img_suffix='.jpg',
seg_map_suffix='.png',
**kwargs) -> None:
super().__init__(
img_suffix=img_suffix,
seg_map_suffix=seg_map_suffix,
ann_file=ann_file,
reduce_zero_label=False,
**kwargs)
@DATASETS.register_module()
class PascalContext59Dataset(BaseSegDataset):
METAINFO = dict(
classes=('aeroplane', 'bag', 'bed', 'bedclothes', 'bench', 'bicycle',
'bird', 'boat', 'book', 'bottle', 'building', 'bus',
'cabinet', 'car', 'cat', 'ceiling', 'chair', 'cloth',
'computer', 'cow', 'cup', 'curtain', 'dog', 'door', 'fence',
'floor', 'flower', 'food', 'grass', 'ground', 'horse',
'keyboard', 'light', 'motorbike', 'mountain', 'mouse',
'person', 'plate', 'platform', 'pottedplant', 'road', 'rock',
'sheep', 'shelves', 'sidewalk', 'sign', 'sky', 'snow', 'sofa',
'table', 'track', 'train', 'tree', 'truck', 'tvmonitor',
'wall', 'water', 'window', 'wood'),
palette=[[180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3],
[120, 120, 80], [140, 140, 140], [204, 5, 255],
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255]])
def __init__(self,
ann_file: str,
img_suffix='.jpg',
seg_map_suffix='.png',
reduce_zero_label=True,
**kwargs):
super().__init__(
img_suffix=img_suffix,
seg_map_suffix=seg_map_suffix,
ann_file=ann_file,
reduce_zero_label=reduce_zero_label,
**kwargs)
@DATASETS.register_module()
class DemoDataset(BaseSegDataset):
METAINFO = dict(
classes=('tomato doll', 'bed'),
palette=[[180, 120, 120], [6, 230, 230]])
def __init__(self,
img_suffix='.jpg',
seg_map_suffix='.png',
reduce_zero_label=True,
**kwargs):
super().__init__(
img_suffix=img_suffix,
seg_map_suffix=seg_map_suffix,
reduce_zero_label=reduce_zero_label,
**kwargs)