-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompute_dim_red.py
93 lines (78 loc) · 3.15 KB
/
compute_dim_red.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import numpy as np
import networkx as nx
from tqdm import tqdm
def read_protnames(path):
prot_list = list()
f = open(path, 'r').readlines()
for line in tqdm(f):
prot_list.append(line.strip())
return prot_list
def compute_PCA(matrix):
'''
Computes a PCA on the standardized protein-protein similarity matrix.
:param matrix: protein-protein similarity matrix
:return:
'''
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
print('Computing PCA ...')
standardizedData = StandardScaler().fit_transform(matrix)
pca = PCA(n_components=128)
pca.fit(standardizedData)
print(pca.explained_variance_ratio_)
plt.bar(range(1, len(pca.explained_variance_) + 1), pca.explained_variance_)
plt.ylabel('Explained variance')
plt.xlabel('Components')
plt.plot(range(1, len(pca.explained_variance_) + 1),
np.cumsum(pca.explained_variance_),
c='red',
label="Cumulative Explained Variance")
plt.legend(loc='upper left')
plt.show()
plt.plot(pca.explained_variance_ratio_)
plt.xlabel('number of components')
plt.ylabel('cumulative explained variance')
plt.show()
return pca.fit_transform(standardizedData)
def compute_MDS(matrix):
from sklearn.preprocessing import StandardScaler
from sklearn.manifold import MDS
print('Standardizing Data ...')
standardizedData = StandardScaler().fit_transform(matrix)
embedding = MDS(n_components=128)
print('Computing MDS ...')
mds = embedding.fit_transform(standardizedData)
return mds
def compute_node2vec(network, organism):
path_to_edgelist = f'data/{organism}.edgelist'
path_to_nodelist = f'data/{organism}.nodelist'
nx.write_edgelist(network, path_to_edgelist, data=['bitscore'])
nodes = list(network.nodes.data('uniprot_id'))
with open(path_to_nodelist, 'w') as f:
for node in nodes:
f.write(f'{node[0]}\t{node[1]}\n')
if __name__ == "__main__":
sim_matrix_yeast = np.load(
'../../network_data/SIMAP2/matrices/sim_matrix_yeast.npy')
yeast_pca = compute_PCA(sim_matrix_yeast)
np.save('data/yeast_pca.npy', yeast_pca)
yeast_mds = compute_MDS(sim_matrix_yeast)
np.save('data/yeast_mds.npy', yeast_mds)
sim_matrix_human = np.load(
'../../network_data/SIMAP2/matrices/sim_matrix_human.npy')
human_pca = compute_PCA(sim_matrix_human)
np.save('data/human_pca.npy', human_pca)
human_mds = compute_MDS(sim_matrix_human)
np.save('data/human_mds.npy', human_mds)
yeast_network = nx.read_graphml(
'../../network_data/SIMAP2/yeast_networks/only_yeast.graphml')
compute_node2vec(yeast_network, 'yeast')
human_network = nx.read_graphml(
'../../network_data/SIMAP2/human_networks/only_human.graphml')
compute_node2vec(human_network, 'human')
### run
# cd snap/examples/node2vec
# make all
# ./node2vec -i:../../../algorithms/Custom/data/yeast.edgelist -o:../../../algorithms/Custom/data/yeast.emb
# ./node2vec -i:../../../algorithms/Custom/data/human.edgelist -o:../../../algorithms/Custom/data/human.emb