forked from junxiaosong/AlphaZero_Gomoku
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhuman_play.py
95 lines (78 loc) · 3.35 KB
/
human_play.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# -*- coding: utf-8 -*-
"""
human VS AI models
Input your move in the format: 2,3
@author: Junxiao Song
"""
from __future__ import print_function
import pickle
from game import Board, Game, BoardSlim
from mcts_pure import MCTSPlayer as MCTS_Pure
from mcts_alphaZero import MCTSPlayer
from policy_value_net_numpy import PolicyValueNetNumpy
# from policy_value_net import PolicyValueNet # Theano and Lasagne
# from policy_value_net_pytorch import PolicyValueNet # Pytorch
# from policy_value_net_tensorflow import PolicyValueNet # Tensorflow
# from policy_value_net_keras import PolicyValueNet # Keras
from policy_net_keras import PolicyNet
from policy_player import PolicyPlayer
import numpy as np
class Human(object):
"""
human player
"""
def __init__(self):
self.player = None
def set_player_ind(self, p):
self.player = p
def get_action(self, board):
try:
location = input("Your move: ")
if isinstance(location, str): # for python3
location = [int(n, 10) for n in location.split(",")]
move = board.location_to_move(location)
except Exception as e:
move = -1
if move == -1 or move not in board.availables:
print("invalid move")
move = self.get_action(board)
return move
def __str__(self):
return "Human {}".format(self.player)
def run():
n = 4
width, height = 6, 6
model_file = 'PATH_TO_POLICY'
try:
initial_board = np.array([[0,1,0,2,0,0],[0,2,1,1,0,0],[1,2,2,2,1,0],[2,0,1,1,2,0],[1,0,2,2,0,0],[0,0,0,0,
0,0]])
i_board = np.zeros((2, height, width))
i_board[0] = initial_board == 1
i_board[1] = initial_board == 2
board = BoardSlim(width=width, height=height, n_in_row=n)
game = Game(board)
# ############### human VS AI ###################
# load the trained policy_value_net in either Theano/Lasagne, PyTorch or TensorFlow
# best_policy = PolicyValueNet(width, height, model_file = model_file)
# mcts_player = MCTSPlayer(best_policy.policy_value_fn, c_puct=5, n_playout=400)
# load the provided model (trained in Theano/Lasagne) into a MCTS player written in pure numpy
# try:
# policy_param = pickle.load(open(model_file, 'rb'))
# except:
# policy_param = pickle.load(open(model_file, 'rb'),
# encoding='bytes') # To support python3
best_policy = PolicyNet(width, height, model_file=model_file)
policy_player = PolicyPlayer(best_policy, False)
# mcts_player = MCTSPlayer(best_policy.policy_value_fn,
# c_puct=5,
# n_playout=400) # set larger n_playout for better performance
# uncomment the following line to play with pure MCTS (it's much weaker even with a larger n_playout)
# mcts_player = MCTS_Pure(c_puct=5, n_playout=1000)
# human player, input your move in the format: 2,3
human = Human()
# set start_player=0 for human first
game.start_play(policy_player, human, start_player=1, is_shown=1, start_board=i_board)
except KeyboardInterrupt:
print('\n\rquit')
if __name__ == '__main__':
run()