forked from ultralytics/ultralytics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
81 lines (73 loc) · 3.11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import argparse
import os
from pathlib import Path
# import debugpy
# debugpy.listen(("localhost", 9501))
# print("Waiting for debugger attach")
# debugpy.wait_for_client()
os.environ['NO_ALBUMENTATIONS_UPDATE'] = '1'
from ultralytics import YOLO
from ultralytics.utils import DEFAULT_CFG_PATH
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--data', default=None, required=True, type=str)
parser.add_argument('--model_path', default=None, required=True, type=str)
parser.add_argument('--cfg', default=DEFAULT_CFG_PATH, required=False, type=str)
parser.add_argument('--reg_max', default=16, required=False, type=int)
parser.add_argument('--epoch', default=None, required=True, type=int)
parser.add_argument('--optimizer', default='auto', required=False, type=str)
parser.add_argument('--momentum', default=0.937, required=False, type=float)
parser.add_argument('--lr0', default=0.02, required=False, type=float)
parser.add_argument('--warmup-epochs', default=3.0, required=False, type=float)
parser.add_argument('--batch-size', default=16, required=False, type=int)
parser.add_argument('--image-size', default=None, required=True, type=int)
parser.add_argument('--mosaic', default=1.0, required=False, type=float)
parser.add_argument('--close_mosaic', default=10, required=False, type=int)
parser.add_argument('--pretrain', default=None, required=False, type=str)
parser.add_argument('--val', default=1, required=False, type=int)
parser.add_argument('--plot', default=0, required=False, type=int)
parser.add_argument('--project', default=None, required=True, type=str)
parser.add_argument('--resume', action=argparse.BooleanOptionalAction)
parser.add_argument('--workers', default=8, required=False, type=int)
parser.add_argument('--device', default="0", required=False, type=str)
parser.add_argument('--save-period', default=10, required=False, type=int)
parser.add_argument('--patience', default=100, required=False, type=int)
args = parser.parse_args()
# Load a pre-trained model
model = YOLO(args.model_path)
# whether to val during training
if args.val:
val = True
else:
val = False
# whether to plot
if args.plot:
plot = True
else:
plot = False
# Train the model
name = f"{Path(args.model_path).stem}_{args.data}_epoch{args.epoch}_imgsz{args.image_size}_bs{args.batch_size}_reg_max{args.reg_max}"
results = model.train(
data=f'{args.data}.yaml',
cfg=args.cfg,
epochs=args.epoch,
warmup_epochs=args.warmup_epochs,
lr0=args.lr0,
optimizer=args.optimizer,
momentum=args.momentum,
imgsz=args.image_size,
mosaic=args.mosaic,
batch=args.batch_size,
device=args.device,
workers=args.workers,
plots=plot,
reg_max=args.reg_max,
exist_ok=False,
val=val,
resume=args.resume,
save_period=args.save_period,
patience=args.patience,
project=args.project,
name=name,
close_mosaic=args.close_mosaic,
)