-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodeling.py
208 lines (173 loc) · 6.07 KB
/
modeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import multiprocessing
import os
import re
import time
from abc import ABC, abstractmethod
from typing import List, Optional
import google.generativeai as genai
import openai
import vllm
from fire import Fire
from openai import AzureOpenAI
from peft import PeftModel
from pydantic import BaseModel
from tqdm import tqdm
from transformers import (
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoTokenizer,
PreTrainedModel,
PreTrainedTokenizer,
)
from vllm import LLM, SamplingParams
class Generate(ABC):
@abstractmethod
def generate(self):
"""Method documentation."""
pass
def fail_safe_generate(self, prompt):
for _ in range(3):
output = self.generate(prompt)
if output != "not available":
return output
time.sleep(20)
def generate_batch(self, prompts, threads=128):
with multiprocessing.Pool(threads) as pool:
results = list(
tqdm(pool.imap(self.fail_safe_generate, prompts), total=len(prompts))
)
return results
class GPT_o1(BaseModel, Generate, arbitrary_types_allowed=True, extra="allow"):
azure_endpoint = "https://declaregpt4.openai.azure.com/"
api_key: Optional[str] = None
api_version = "2024-02-01"
loaded = False
def load(self):
api_key = os.environ["o1_preview_api"]
self.client = AzureOpenAI(
azure_endpoint="https://declaregpt4.openai.azure.com/",
api_key=api_key,
api_version="2024-02-01",
)
def generate(self, prompt):
if not self.loaded:
self.load()
self.loaded = True
if prompt == "NA":
return "NA"
try:
response = self.client.chat.completions.create(
model="o1",
messages=[
{"role": "user", "content": prompt},
],
)
return response.choices[0].message.content
except Exception:
return "not available"
class GPT_4o(BaseModel, Generate, arbitrary_types_allowed=True, extra="allow"):
azure_endpoint = "https://declaregpt4.openai.azure.com/"
api_key: Optional[str] = None
api_version = "2024-02-01"
loaded = False
def load(self):
api_key = os.environ["gpt4o_api"]
self.client = AzureOpenAI(
azure_endpoint="https://declaregpt4.openai.azure.com/",
api_key=api_key,
api_version="2024-02-01",
)
def generate(self, prompt):
if not self.loaded:
self.load()
self.loaded = True
if prompt == "NA":
return "NA"
try:
response = self.client.chat.completions.create(
model="GPT4o",
messages=[
{"role": "user", "content": prompt},
],
)
return response.choices[0].message.content
except Exception:
return "not available"
class ZeroShotChatTemplate:
# This is the default template used in llama-factory for training
texts: List[str] = []
@staticmethod
def make_prompt(prompt: str) -> str:
return f"Human: {prompt}\nAssistant: "
@staticmethod
def get_stopping_words() -> List[str]:
return ["Human:"]
@staticmethod
def extract_answer(text: str) -> str:
filtered = "".join([char for char in text if char.isdigit() or char == " "])
if not filtered.strip():
return text
return re.findall(pattern=r"\d+", string=filtered)[-1]
class VLLMModel(BaseModel, arbitrary_types_allowed=True):
path_model: str
model: vllm.LLM = None
tokenizer: Optional[PreTrainedTokenizer] = None
max_input_length: int = 512
max_output_length: int = 512
stopping_words: Optional[List[str]] = None
def load(self):
if self.model is None:
self.model = vllm.LLM(model=self.path_model, trust_remote_code=True)
if self.tokenizer is None:
self.tokenizer = AutoTokenizer.from_pretrained(self.path_model)
def format_prompt(self, prompt: str) -> str:
self.load()
prompt = prompt.rstrip(" ") # Llama is sensitive (eg "Answer:" vs "Answer: ")
return prompt
def make_kwargs(self, do_sample: bool, **kwargs) -> dict:
if self.stopping_words:
kwargs.update(stop=self.stopping_words)
params = vllm.SamplingParams(
temperature=0.5 if do_sample else 0.0,
max_tokens=self.max_output_length,
**kwargs,
)
outputs = dict(sampling_params=params, use_tqdm=False)
return outputs
def generate(self, prompt: str) -> str:
prompt = f"Human: {prompt}\nAssistant: "
prompt = self.format_prompt(prompt)
outputs = self.model.generate([prompt], **self.make_kwargs(do_sample=False))
pred = outputs[0].outputs[0].text
pred = pred.split("<|endoftext|>")[0]
return pred
def generate_batch(self, prompts):
outputs = []
for p in tqdm(prompts):
if p == "NA":
outputs.append("NA")
continue
out = self.generate(p)
outputs.append(out)
print(p)
print(out)
return outputs
def select_model(model_name, **kwargs):
if model_name == "o1":
model = GPT_o1()
elif model_name == "4o":
model = GPT_4o()
else:
model = VLLMModel(path_model=model_name, **kwargs)
return model
def test_model(
model_name: str = "flan",
**kwargs,
):
prompt = "John has 3 boxes, each with external dimensions of 5 inches by 6 inches by 4 inches and a wall thickness of 1 inch. If the total internal volume of all three boxes increases by a certain amount, X , while the number of boxes and external dimensions remain unchanged, by how much, y , will the wall thickness increase? Derive the equation relating X and y ."
model = select_model(model_name, **kwargs)
print(locals())
print(prompt)
print(model.generate(prompt))
if __name__ == "__main__":
Fire(test_model)